4.8 Article

Optical Properties of Low-Loss Ag Films and Nanostructures on Transparent Substrates

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 9, 页码 8333-8340

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b18367

关键词

surface plasmon; silver; ellipsometry; single-crystalline film; polycrystalline film; epitaxial growth technique; film-transfer technique; nanostructure

资金

  1. JSPS KAKENHI [15H03546, 16KK0150]
  2. Salt Science Research Foundation [1718]
  3. Grants-in-Aid for Scientific Research [16KK0150, 15H03546] Funding Source: KAKEN

向作者/读者索取更多资源

We demonstrate the fabrication of a low-loss single crystalline Ag nanostructure deposited on transparent substrates. Our approach is based on an epitaxial growth technique in which a NaCl(001) substrate is used. The NaCl substrate is dissolved in water to allow the Ag film to be transferred onto the desired substrates. Focused ion beam milling is subsequently employed to pattern a nanoarray structure consisting of 200 nanorods. The epitaxial Ag films with nanoarray structures grown in the study exhibited very flat and smooth surfaces having excellent crystallinity and local misorientation of less than 1 degrees Further, spectroscopic ellipsometry measurements indicated that the imaginary part of the dielectric constant of the single-crystalline film was smaller than that of a conventional polycrystalline film. Moreover, we used the three-dimensional finite-difference time-domain method to analyze the plasmonic properties of the nanoarray structure by considering the actual processed structure. Characteristically, when the SiO2 substrate was etched by ion beam milling to a depth of 30 nm, the spectrum showed a spectral shape 20% sharper than that of the substrate with no etching (depth: 0 nm). The plasmonic performance of the single-crystalline Ag nanostructure was largely determined by its structural precision and the dielectric properties of the metal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据