4.8 Article

Improved Charge Transfer in a Mn2O3@Co1.2Ni1.8O4 Hybrid for Highly Stable Alkaline Direct Methanol Fuel Cells with Good Methanol Tolerance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 11, 页码 9485-9494

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00613

关键词

Mn2O3@Co1.2Ni1.8O4; oxygen reduction reaction; direct methanol fuel cell; stability; methanol tolerance

资金

  1. National Natural Science Foundation of China [51271137, 51602246]
  2. Fundamental Research Funds for the central Universities [xjj2014052]

向作者/读者索取更多资源

A three-dimensional Mn2O3@Co1.2Ni1.8O4 hybrid was synthesized via facile two-step processes and employed as a cathode catalyst in direct methanol fuel cells (DMFCs) for the first time. Because of the unique architecture with ultrathin and porous nanosheets of the Co1.2Ni1.8O4 shell, this composite exhibits better electrochemical performance than the pristine Mn2O3. Remarkably, it shows excellent methanol tolerance, even in a high concentration solution. The DMFC was assembled with Mn2O3@Co1.2Ni1.8O4, polymer fiber membranes, and PtRu/C as the cathode, membrane, and anode, respectively. The power densities of 57.5 and 70.5 mW cm(-2) were recorded at 18 and 28 degrees C, respectively, especially the former is the best result reported in the literature at such a low temperature. The stability of the Mn2O3@Co1.2Ni1.8O4 catalyzed cathode was evaluated, and the results show that this compound possesses excellent stability in a high methanol concentration. The improved electrochemical activity could be attributed to the narrow band gap of the hybrid, which accelerates the electrons jumping from the valence band to the conduction band. Therefore, Mn-III could be oxidized into Mn-IV more easily, simultaneously providing an electron to the absorbed oxygen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据