4.4 Article

Macro-nutrient concentrations in Antarctic pack ice: Overall patterns and overlooked processes

期刊

出版社

UNIV CALIFORNIA PRESS
DOI: 10.1525/elementa.217

关键词

-

资金

  1. BELSPO [SD/CA/05A]
  2. FNRS [2.4584.09, 2.4517.11]
  3. CFWB [02/07-287]
  4. US National Science Foundation [1341717]
  5. NERC
  6. Royal Society
  7. Leverhulme Trust
  8. Australian Government through Australian Antarctic Science [2767, 4073]
  9. Antarctic Climate and Ecosystems Cooperative Research Centre
  10. BISICLO (FP7) [CIG 321938]
  11. NERC [NE/F019289/1] Funding Source: UKRI
  12. Natural Environment Research Council [NE/F019289/1] Funding Source: researchfish
  13. Grants-in-Aid for Scientific Research [15H02799, 15K16135, 17H04715] Funding Source: KAKEN

向作者/读者索取更多资源

Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and silicic acid concentrations change with time, as expected from a seasonally productive ecosystem. In winter, salinity-normalized nitrate and silicic acid concentrations (C*) in sea ice are close to seawater concentrations (C-w), indicating little or no biological activity. In spring, nitrate and silicic acid concentrations become partially depleted with respect to seawater (C* < C-w), commensurate with the seasonal build-up of ice microalgae promoted by increased insolation. Stronger and earlier nitrate than silicic acid consumption suggests that a significant fraction of the primary productivity in sea ice is sustained by flagellates. By both consuming and producing ammonium and nitrite, the microbial community maintains these nutrients at relatively low concentrations in spring. With the decrease in insolation beginning in late summer, dissolved inorganic nitrogen and silicic acid concentrations increase, indicating imbalance between their production (increasing or unchanged) and consumption (decreasing) in sea ice. Unlike the depleted concentrations of both nitrate and silicic acid from spring to summer, phosphate accumulates in sea ice (C* > C-w). The phosphate excess could be explained by a greater allocation to phosphorus-rich biomolecules during ice algal blooms coupled with convective loss of excess dissolved nitrogen, preferential remineralization of phosphorus, and/or phosphate adsorption onto metal-organic complexes. Ammonium also appears to be efficiently adsorbed onto organic matter, with likely consequences to nitrogen mobility and availability. This dataset supports the view that the sea ice microbial community is highly efficient at processing nutrients but with a dynamic quite different from that in oceanic surface waters calling for focused future investigations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据