4.7 Review

Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases - important players in mitochondrial metabolism and metabolic health

期刊

REDOX BIOLOGY
卷 12, 期 -, 页码 246-263

出版社

ELSEVIER
DOI: 10.1016/j.redox.2017.02.011

关键词

Obesity; Mitochondria; Adipose tissue; Sirtuins; Poly(ADP-ribose) polymerases; NAD(+)

资金

  1. Academy of Finland [285963]
  2. Biocentrum Helsinki
  3. Sigrid Juselius Foundation
  4. Academy of Finland Centre of Excellence in Research on Mitochondria, Metabolism, and Disease (FinMIT) [272376]
  5. Academy of Finland project grant [266286]
  6. Novo Nordisk Foundation
  7. Finnish Foundation for Cardiovascular Research
  8. University of Helsinki
  9. Finnish Diabetes Research Foundation
  10. Helsinki University Hospital research funds
  11. Novo Nordisk Fonden [NNF10OC1013354] Funding Source: researchfish

向作者/读者索取更多资源

Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD(+)/NADH redox balance and NAD+ is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD(+) homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD(+) pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据