4.6 Article

Benchmarking Multi- and Many-Objective Evolutionary Algorithms Under Two Optimization Scenarios

期刊

IEEE ACCESS
卷 5, 期 -, 页码 19597-19619

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2017.2751071

关键词

Multi-objective optimization; evolutionary multi-objective optimization; benchmarking study

资金

  1. MEXT-Development of Innovative Design and Production Processes that Lead the Way for the Manufacturing Industry in the Near Future through Priority Issue on Post-K computer

向作者/读者索取更多资源

Recently, a large number of multi-objective evolutionary algorithms (MOEAs) for many-objective optimization problems have been proposed in the evolutionary computation community. However, an exhaustive benchmarking study has never been performed. As a result, the performance of the MOEAs has not been well understood yet. Moreover, in almost all previous studies, the performance of the MOEAs was evaluated based on nondominated solutions in the final population at the end of the search. Such traditional benchmarking methodology has several critical issues. In this paper, we exhaustively investigate the anytime performance of 21 MOEAs using an unbounded external archive (UEA), which stores all nondominated solutions found during the search process. Each MOEA is evaluated under two optimization scenarios called UEA and reduced UEA in addition to the standard final population scenario. These two scenarios are more practical in real-world applications than the final population scenario. Experimental results obtained under the two scenarios are significantly different from the previously reported results under the final population scenario. For example, results on the Walking Fish Group test problems with up to six objectives indicate that some recently proposed MOEAs are outperformed by some classical MOEAs. We also analyze the reason why some classical MOEAs work well under the UEA and the reduced UEA scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据