4.5 Article

Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

期刊

ASTRONOMY & ASTROPHYSICS
卷 599, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201629164

关键词

cosmic background radiation; cosmology; observations; submillimeter; ISM - dust; extinction

资金

  1. ESA (France)
  2. CNES (France)
  3. CNRS/INSU-IN2P3-INP (France)
  4. ASI (Italy)
  5. CNR (Italy)
  6. INAF (Italy)
  7. NASA (USA)
  8. DoE (USA)
  9. STFC (UK)
  10. UKSA (UK)
  11. CSIC (Spain)
  12. MINECO (Spain)
  13. RES (Spain)
  14. Tekes (Finland)
  15. AoF (Finland)
  16. CSC (Finland)
  17. DLR (Germany)
  18. MPG (Germany)
  19. CSA (Canada)
  20. DTU Space (Denmark)
  21. SER/SSO (Switzerland)
  22. RCN (Norway)
  23. SFI (Ireland)
  24. FCT/MCTES (Portugal)
  25. ERC (EU)
  26. PRACE (EU)
  27. European Research Council under the European Union's Seventh Framework Programme/ERC [267934]
  28. Science and Technology Facilities Council [ST/L000768/1, ST/N000927/1, ST/L000393/1, ST/K002821/1] Funding Source: researchfish
  29. UK Space Agency [ST/N001095/1] Funding Source: researchfish

向作者/读者索取更多资源

The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBB `angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据