4.5 Article

Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis

期刊

ARTHRITIS & RHEUMATOLOGY
卷 69, 期 7, 页码 1418-1428

出版社

WILEY
DOI: 10.1002/art.40104

关键词

-

资金

  1. NIH (US Department of Health and Human Services) [AG-007996, AG-049617]

向作者/读者索取更多资源

Objective. Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA. Methods. OA severity was histologically assessed in 4-month-old wild-type and REDD1(-/-) mice subjected to surgical destabilization of the medial meniscus (DMM). Chondrocyte autophagy, apoptosis, mitochondrial content, and expression of mitochondrial biogenesis markers were determined in cartilage and cultured chondrocytes from wild-type and REDD1(-/-) mice. Results. REDD1 deficiency increased the severity of changes in cartilage, menisci, subchondral bone, and synovium in the DMM model of OA. Chondrocyte death was increased in the cartilage of REDD1(-/-) mice and in cultured REDD1(-/-) mouse chondrocytes under oxidative stress conditions. Expression of key autophagy markers (microtubule-associated protein 1A/1B light chain 3 and autophagy protein 5) was markedly reduced in cartilage from REDD1(-/-) mice and in cultured human and mouse chondrocytes with REDD1 depletion. Mitochondrial content, ATP levels, and expression of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and transcription factor A, mitochondrial (TFAM) were also decreased in REDD1-deficient chondrocytes. REDD1 was required for AMP-activated protein kinase-induced PGC-1 alpha in chondrocytes. Conclusion. Our findings suggest that REDD1 is a key mediator of cartilage homeostasis through regulation of autophagy and mitochondrial biogenesis and that REDD1 deficiency exacerbates the severity of injury-induced OA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据