4.8 Article

Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays

期刊

NANO ENERGY
卷 38, 期 -, 页码 59-65

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2017.05.028

关键词

Boiling heat transfer; Two-level hierarchical surface; Copper nanowires; Capillary pumping; Bubble nucleation; Liquid rewetting

资金

  1. Defense Advanced Research Projects Agency [N66001-08-C-2006]

向作者/读者索取更多资源

Enhancing boiling heat transfer by surface modification is of critical interest for improving the efficiency of many energy systems and for addressing thermal management bottlenecks in electronics. However, the improvement of all boiling heat transfer characteristics including the critical heat flux, heat transfer coefficient and onset of nucleate boiling, usually has conflicting requirements on surface wettability and morphology. In this work, we develop a two-level hierarchical surface with patterned copper nanowire arrays for boiling heat transfer enhancement. By surrounding long nanowire arrays with short nanowires where microcavities are formed between short nanowire clusters, a novel strategy is reported to improve all the boiling heat transfer characteristics through increasing bubble nucleation site density, capillary-induced liquid rewetting, and the separation of liquid-vapor pathways. Compared to boiling heat transfer performance on the plain copper surface, a 71% higher critical heat flux, a 185% higher heat transfer coefficient as well as a 37% lower onset of nucleate boiling are demonstrated on such two-level hierarchical surfaces. In addition, we correctly predict the effect of surface structure on the boiling heat transfer performance by an analytical model. Through distinguishing the role of different structure morphologies including the improved nucleation site by microcavities, enhanced liquid wicking by nanowires, and continuous liquid supply by long nanowire arrays, we have established a comprehensive understanding on the relation between the surface structures and boiling heat transfer characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Applied

Effect of four-phonon interaction on phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe

Wenjiang Zhou, Yu Dai, Junjie Zhang, Bai Song, Te-Huan Liu, Ronggui Yang

Summary: In this study, the phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe (beta-SnSe) were investigated using the Boltzmann transport equation and ab initio approaches. The results showed a significant reduction in thermal conductivity when considering four-phonon scatterings. It was also suggested that nanostructure engineering could be used to reduce thermal conductivity without sacrificing the power factor.

APPLIED PHYSICS LETTERS (2022)

Article Chemistry, Multidisciplinary

Ballistic Thermal Transport at Sub-10 nm Laser-Induced Hot Spots in GaN Crystal

Dezhao Huang, Qiangsheng Sun, Zeyu Liu, Shen Xu, Ronggui Yang, Yanan Yue

Summary: The authors developed a tip-enhanced Raman thermometry approach to study thermal transport at nanoscale hotspots and predicted the phonon mean free path through a combination of experiments and simulations.

ADVANCED SCIENCE (2023)

Article Chemistry, Multidisciplinary

Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives

Lu Chen, Te-Huan Liu, Xiangze Wang, Yandong Wang, Xiwei Cui, Qingwei Yan, Le Lv, Junfeng Ying, Jingyao Gao, Meng Han, Jinhong Yu, Chengyi Song, Jinwei Gao, Rong Sun, Chen Xue, Nan Jiang, Tao Deng, Kazuhito Nishimura, Ronggui Yang, Cheng-Te Lin, Wen Dai

Summary: The rapid development of highly integrated microelectronic devices leads to a demand for advanced thermally conductive adhesives (TCAs) to solve the issue of heat transfer. Metal nanoflakes with a natural 2D structure and isotropic thermal conductivity are promising fillers for high-performance TCAs. However, achieving TCAs with thermal conductivity over 10 W m(-1) K-1 at filler content below 30 vol% remains challenging. This study introduces a top-down strategy to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m(-1) K-1, reaching 93% of the theoretical value, and demonstrates their superior heat transfer efficiency in microelectronic cooling performance evaluations.

ADVANCED MATERIALS (2023)

Article Physics, Applied

Machine learning reconstruction of depth-dependent thermal conductivity profile from pump-probe thermoreflectance signals

Zeyu Xiang, Yu Pang, Xin Qian, Ronggui Yang

Summary: Characterizing spatially varying thermal conductivities is crucial for understanding the structure-property relation in various thermal functional materials. This study presents a machine-learning-based method for directly extracting depth-dependent thermal conductivity profiles from pump-probe phase signals. The proposed method demonstrates excellent performance in accurately reproducing different types of thermal conductivity profiles and shows potential for depth-dependent thermal property mapping.

APPLIED PHYSICS LETTERS (2023)

Review Chemistry, Physical

Heat-localized solar evaporation: Transport processes and applications

Changkang Du, Xinpeng Zhao, Xin Qian, Congliang Huang, Ronggui Yang

Summary: Solar evaporation technology, which is free of fossil fuel consumption and carbon dioxide emission, has attracted significant research interest in recent years. Although many systems have achieved high evaporation efficiency, the upper limit of this efficiency is not bounded by 100%. In this article, the thermodynamic limit of solar evaporation efficiency is analyzed, and the challenges and potential improvements for heat-localized solar evaporation and their hybrid systems are discussed.

NANO ENERGY (2023)

Article Chemistry, Physical

Near-Infrared Trapping by Surface Plasmons in Randomized Platinum-Ceramic Metamaterial for Thermal Barrier Coatings

Zesheng Yang, Muzhang Huang, Ronggui Yang, Jingbo Sun, Xuefei Zhang, Wei Pan, Chunlei Wan

Summary: The high operation temperature of next generation gas turbines poses a challenge for the durability of metallic turbine blades due to near-infrared (NIR) thermal radiation. Although thermal barrier coatings (TBCs) are used for thermal insulation, they are transparent to NIR radiation. This study introduces an NIR metamaterial consisting of Gd2Zr2O7 ceramic matrix with dispersed Pt nanoparticles, which achieves a broadband NIR extinction and effectively shields radiative heat transfer.

SMALL METHODS (2023)

Article Materials Science, Multidisciplinary

Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications

Tianbo Lu, Boyi Wang, Guodong Li, Jiawei Yang, Xiaofan Zhang, Nan Chen, Te-Huan Liu, Ronggui Yang, Pingjuan Niu, Zongxiang Kan, Hangtian Zhu, Huaizhou Zhao

Summary: In order to meet the increasing demand for thermoelectric cooling in high heat flux systems, it is necessary to construct high-performance thermoelectric devices with materials that have both high thermoelectric properties and mechanical strength. However, improving the thermoelectric and mechanical properties simultaneously is challenging due to the anisotropic thermal and electrical transports in the layered structure of Bi2Te3. In this study, a hot extrusion (HE) technique was developed to manipulate the texture ordering in Bi2Te3 material, resulting in significant improvements in thermoelectric and mechanical properties.

MATERIALS TODAY PHYSICS (2023)

Article Materials Science, Multidisciplinary

Transparent, anti-corrosion and high broadband emission coating for zero energy consumption cooling technology

Yiteng Tu, Xinyu Tan, Guiguang Qi, Xiongbo Yang, Xiqiao Ouyang, Wensheng Yan, Weiwei Hu, Jialin Geng, Ronggui Yang

Summary: Daytime radiative cooling, a passive cooling technology, has attracted significant interest due to its zero energy consumption and zero greenhouse gas emissions. We propose a spectrally selective coating based on tri-cyclodecane dimethanol diacrylate (DCPDA) monomer, which can be fabricated with simple and scalable methods. The coated glass exhibits high transmissivity in the visible wavelengths and high thermal emissivity in the atmospheric window. Outdoor cooling tests demonstrate the sub-ambient cooling capability of the coating applied to aluminum sheets, making it a promising solution for transparent radiative cooling applications.

MATERIALS TODAY PHYSICS (2023)

Article Chemistry, Physical

Effect of solvation shell structure on thermopower of liquid redox pairs

Yuchi Chen, Qiangqiang Huang, Te-Huan Liu, Xin Qian, Ronggui Yang

Summary: This study used molecular dynamics simulations to predict the thermopower of the redox pairs Fe(CN)6(3-)/Fe(CN)6(4-) and Fe3+/Fe2+, and found excellent agreement with experimental values. It was discovered that the thermopower of Fe3+/Fe2+ can be increased from 1.7+/-0.4 mV/K to 3.8+/-0.5 mV/K by increasing the acetone to water fraction. This increase was attributed to the intercalation of acetone molecules into the first solvation shell of Fe2+ at high acetone fractions.

ECOMAT (2023)

Article Thermodynamics

Thermally regenerative electrochemically cycled flow battery coupled with radiative cooling for low-grade heat harvesting

Qiangqiang Huang, Yuchi Chen, Xin Qian, Ronggui Yang

Summary: The utilization of low-grade heat sources has been a long-standing challenge due to the limited temperature difference. This study shows that coupling a thermally regenerative electrochemically cycled flow battery with radiative coolers can enhance the energy density and generate additional operating temperature difference. The model also captures the effects of mass transfer and electrochemical kinetics on power density and efficiency.

ENERGY CONVERSION AND MANAGEMENT (2023)

Article Thermodynamics

Ab initio study of pressure-dependent phonon heat conduction in cubic boron nitride

Jing Wu, Hao Zhang, Tianyu Wang, Xin Qian, Bai Song, Te-Huan Liu, Ronggui Yang

Summary: In this study, the pressure-dependent thermal conductivity of isotope-engineered cubic boron nitride (c-BN) was investigated using ab initio calculations and the Boltzmann transport equation. It was found that the thermal conductivity of isotopically mixed c-BN is less sensitive to pressure variations compared to isotope-enriched c-BN. The results provide a fundamental understanding of pressure-dependent phonon transport in c-BN from a microscopic perspective.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2023)

Article Chemistry, Multidisciplinary

Transient and dry recycling of battery materials with negligible carbon footprint and roll-to-roll scalability

Hao Zhang, Yongsheng Ji, Yonggang Yao, Long Qie, Zhiheng Cheng, Zhihao Ma, Xin Qian, Ronggui Yang, Chenghang Li, Yaqing Guo, Yifei Yuan, Haoyu Xiao, Haiping Yang, Jing Ma, Jun Lu, Yunhui Huang

Summary: Battery recycling is becoming increasingly important due to the widespread use of Li-ion batteries. Direct recycling methods have advantages of high-purity material recovery and lower environmental impact, but most methods are complex and have low yield. This study presents a transient recycling approach with high efficiency for battery materials, achieving a recovery ratio of over 97% and intact metal foil of nearly 100% through shock-type or rolled-over heating.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Green & Sustainable Science & Technology

Temperature reduction and energy-saving analysis in grain storage: Field application of radiative cooling technology to grain storage warehouse

Weiping Xu, Sihong Gong, Ningsheng Wang, Wenbo Zhao, Hongle Yin, Ronggui Yang, Xiaobo Yin, Gang Tan

Summary: Radiative cooling technology, using a membrane with spectrum-selective optical properties, has been shown to effectively reduce temperatures in grain storage warehouses. Field testing in Hangzhou, China demonstrated temperature reductions of up to 9.8°C and 4°C in headspace and grain respectively. By creating a building model, it was found that significant electricity savings and temperature reductions can be achieved without the use of air conditioning.

RENEWABLE ENERGY (2023)

Article Chemistry, Multidisciplinary

Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating

Xinpeng Zhao, Ablimit Aili, Dongliang Zhao, Dikai Xu, Xiaobo Yin, Ronggui Yang

Summary: Dynamic control of sunlight entering a building through switchable glazing panels can effectively reduce building energy consumption. The dual-mode glazing panel demonstrated in this study achieved significant cooling and heating performance, leading to potential energy savings in office buildings.

CELL REPORTS PHYSICAL SCIENCE (2022)

Review Chemistry, Physical

Solid particle solar receivers in the next-generation concentrated solar power plant

Fuliang Nie, Fengwu Bai, Zhifeng Wang, Xiaobo Li, Ronggui Yang

Summary: This paper provides an in-depth review of various solid particle solar receiver (SPSR) technologies, including solid particle selection, optimization of receiver system structures, particle flow characteristics, and heat transfer characteristics. By comparing multiple parameters, the technical drawbacks, large-scale development prospects, and potential optimization strategies of various SPSR designs are highlighted.

ECOMAT (2022)

Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)