4.8 Article

A two layer electrode structure for improved Li Ion diffusion and volumetric capacity in Li Ion batteries

期刊

NANO ENERGY
卷 31, 期 -, 页码 377-385

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.11.043

关键词

Lithium ion battery; Layer-by-layer; Layered electrode; Spray processing; Porous TiO2

资金

  1. UK The Engineering and Physical Sciences Research Council (EPSRC) [EP/M009521/1]
  2. EPSRC [EP/M009521/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/M009521/1] Funding Source: researchfish

向作者/读者索取更多资源

Nanomaterials with different morphologies were placed in discrete layers through the thickness of a negative electrode for a Li ion battery to exploit effectively the intrinsic energy storage capabilities of each nanomaterial morphology and to improve the overall dynamics of Li ion diffusion. The two layer electrode showed a combination of high volumetric capacity and rate capability that surpassed the performance of conventional randomly blended electrodes comprising the same nanomaterials. Local Li ion concentrations were measured through the electrode thickness and clearly showed the benefits of the layered structure over the alternatives. The two layer electrode was fabricated by a flexible and scalable suspension atomization and spray deposition technique with generic potential for improved layered electrodes in a wide range of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

A Universal Perovskite Nanocrystal Ink for High-Performance Optoelectronic Devices

Hochan Song, Jonghee Yang, Woo Hyeon Jeong, Jeongjae Lee, Tack Ho Lee, Jung Won Yoon, Hajin Lee, Alexandra J. Ramadan, Robert D. J. Oliver, Seong Chan Cho, Seul Gi Lim, Ji Won Jang, Zhongkai Yu, Jae Taek Oh, Eui Dae Jung, Myoung Hoon Song, Sung Heum Park, James R. Durrant, Henry J. Snaith, Sang Uck Lee, Bo Ram Lee, Hyosung Choi

Summary: This study explores a method to achieve high efficiency and stability in semiconducting lead halide perovskite nanocrystals (PNCs) through a single processing strategy by finding suitable surface ligands. The PNC ink prepared using this method can be used to fabricate both LED and PV devices, with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92%. It is found that a careful design of the aromatic rings in the ligands is crucial for achieving high performance, ease of processing, and improved phase stability. This research demonstrates the role of ligand design in PNC ink formulations for high-throughput production of optoelectronic devices and paves the way for dual-mode devices with both PV and LED functionalities.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Synergistic Surface Modification of Tin-Lead Perovskite Solar Cells

Shuaifeng Hu, Pei Zhao, Kyohei Nakano, Robert D. J. Oliver, Jorge Pascual, Joel A. A. Smith, Takumi Yamada, Minh Anh Truong, Richard Murdey, Nobutaka Shioya, Takeshi Hasegawa, Masahiro Ehara, Michael B. B. Johnston, Keisuke Tajima, Yoshihiko Kanemitsu, Henry J. J. Snaith, Atsushi Wakamiya

Summary: In this study, it is found that the surface treatment of mixed tin-lead halide perovskite films with piperazine promotes charge extraction, and combined treatment with CPTA reduces hysteresis and improves efficiency and stability of solar cells.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition

Peng Chen, Yun Xiao, Lei Li, Lichen Zhao, Maotao Yu, Shunde Li, Juntao Hu, Bin Liu, Yingguo Yang, Deying Luo, Cheng-Hung Hou, Xugang Guo, Jing-Jong Shyue, Zheng-Hong Lu, Qihuang Gong, Henry J. J. Snaith, Rui Zhu

Summary: An improved two-step sequential deposition technique is demonstrated for inverted-structure metal halide perovskite solar cells (PSCs), resulting in significantly enhanced performance. The bottom organic hole-selective layer is treated with a binary modulation system, leading to the refinement of up and buried interfaces for the perovskite films and improved charge transportation. The optimized PSCs achieve a high power conversion efficiency of 23.4% and demonstrate good operational and thermal stability.

ADVANCED MATERIALS (2023)

Article Nanoscience & Nanotechnology

Numerical Design of Microporous Carbon Binder Domains Phase in Composite Cathodes for Lithium-Ion Batteries

Ruihuan Ge, Adam M. Boyce, Yige Sun, Paul R. Shearing, Patrick S. Grant, Denis J. Cumming, Rachel M. Smith

Summary: The complex microstructure of the electrode greatly affects the performance of lithium-ion batteries (LIBs). The microporosity of the carbon binder domain (CBD) has been studied for the first time, revealing its influence on battery performance. The battery's specific capacity improves as the microporosity of the CBD phase increases.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Reducing Nonradiative Losses in Perovskite LEDs through Atomic Layer Deposition of Al2O3 on the Hole-Injection Contact

Emil G. Dyrvik, Jonathan H. Warby, Melissa M. McCarthy, Alexandra J. Ramadan, Karl-Augustin Zaininger, Andreas E. Lauritzen, Suhas Mahesh, Robert A. Taylor, Henry J. Snaith

Summary: In this study, a thin Al2O3 layer grown by atomic layer deposition was used to selectively cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer. This technique improved electroluminescent external quantum efficiency in PeLEDs by reducing nonradiative recombination and improving carrier selectivity. The results show great potential for scale-up and application in other fields.

ACS NANO (2023)

Article Engineering, Environmental

Organic solvent free PbI2 recycling from perovskite solar cells using hot water

Felix Schmidt, Meret Amrein, Sebastian Hedwig, Manuel Kober-Czerny, Adriana Paracchino, Ville Holappa, Riikka Suhonen, Andreas Schaeffer, Edwin C. Constable, Henry J. Snaith, Markus Lenz

Summary: Perovskite solar cells, which rely on the use of lead, face potential environmental concerns. A recycling process using hot water was demonstrated to effectively extract lead from synthetic precursor mixes, plastic-based, and glass-based perovskites with high efficiency. The extracted lead can be precipitated in high purity, allowing for its recovery. This straightforward method mitigates the risk of lead leaching at the end-of-life of perovskite solar cells.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Materials Science, Multidisciplinary

The mechanism of Fe-rich intermetallic compound formation and growth on inoculants revealed by electron backscattered diffraction and X-ray imaging

Shikang Feng, Zelong Jin, Wenjia Du, Insung Han, Andrew Lui, Xiaorong Zhou, Paul R. Shearing, Enzo Liotti, Patrick S. Grant

Summary: Fe-rich intermetallics have a significant impact on the mechanical properties and recyclability of aluminium alloys. This paper investigates the formation and growth mechanisms of primary Al13Fe4 on Al3Ti inoculants through various analytical techniques. The study reveals the crystallographic orientation relationships between Al13Fe4 and Al3Ti, as well as the correlation between the formation and growth dynamics of Al13Fe4 and a twinning-related pseudo-symmetry of Al13Fe4. A potential strategy to refine both intermetallics and a-Al in recycled alloys with elevated Fe concentration is proposed.

MATERIALS & DESIGN (2023)

Article Multidisciplinary Sciences

Dendrite initiation and propagation in lithium metal solid-state batteries

Ziyang Ning, Guanchen Li, Dominic L. R. Melvin, Yang Chen, Junfu Bu, Dominic Spencer-Jolly, Junliang Liu, Bingkun Hu, Xiangwen Gao, Johann Perera, Chen Gong, Shengda D. Pu, Shengming Zhang, Boyang Liu, Gareth O. Hartley, Andrew J. Bodey, Richard I. Todd, Patrick S. Grant, David E. J. Armstrong, T. James Marrow, Charles W. Monroe, Peter G. Bruce

Summary: All-solid-state batteries with a Li anode and ceramic electrolyte have the potential to significantly outperform current Li-ion batteries. However, the formation and penetration of Li dendrites during charging remain a major challenge. Previous models focused on a single process for dendrite initiation and propagation, but our study reveals that these processes are actually separate and independent.

NATURE (2023)

Article Chemistry, Physical

Binary Solvent System Used to Fabricate Fully Annealing-Free Perovskite Solar Cells

Elena J. J. Cassella, Emma L. K. Spooner, Joel A. A. Smith, Timothy Thornber, Mary E. E. O'Kane, Robert D. J. Oliver, Thomas E. E. Catley, Saqlain Choudhary, Christopher J. J. Wood, Deborah B. B. Hammond, Henry J. J. Snaith, David G. G. Lidzey

Summary: Solvent-engineered deposition of high crystalline perovskite thin-films at room temperature using gas-quenching method has been achieved, leading to the fabrication of annealing-free perovskite solar cells (PSCs) with stabilized power conversion efficiencies (PCEs) up to 18.0%. Self-assembled molecules have been used as the hole-transporting layer, further improving the stabilized PCEs of annealing-free devices to 17.1%. This study provides a new approach for large-scale production of annealing-free PSCs.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Structural changes in the silver-carbon composite anode interlayer of solid-state batteries

Dominic Spencer-Jolly, Varnika Agarwal, Christopher Doerrer, Bingkun Hu, Shengming Zhang, Dominic L. R. Melvin, Hui Gao, Xiangwen Gao, Paul Adamson, Oxana Magdysyuk, Patrick S. Grant, Robert A. House, Peter G. Bruce

Summary: Ag-carbon composite interlayers have been proven effective in enabling Li-free cycling of solid-state batteries. Li intercalates electrochemically into graphite on charge, subsequently reacting chemically with Ag to form Li-Ag alloys. Discharge does not reverse this process, instead passing through Li-deficient Li-Ag phases. At higher charging rates, Li intercalation outpaces chemical reactions with Ag, resulting in delayed Li-Ag phase formation and increased Li metal deposition at the current collector. Li dendrites are not suppressed at and above 2.5 mA•cm-2, and Ag nanoparticles are not more effective than a graphite interlayer. Instead, Ag in the carbon interlayer promotes more uniform Li and Li-Ag formation during charge.
Review Electrochemistry

Machine-Learning Approaches for the Discovery of Electrolyte Materials for Solid-State Lithium Batteries

Shengyi Hu, Chun Huang

Summary: Solid-state lithium batteries have received significant research attention for their potential advantages over conventional liquid electrolyte lithium batteries. The discovery of lithium solid-state electrolytes (SSEs) is still ongoing to address remaining challenges, and machine learning (ML) approaches could greatly expedite this process.

BATTERIES-BASEL (2023)

Review Electrochemistry

Advances in Strategic Inhibition of Polysulfide Shuttle in Room-Temperature Sodium-Sulfur Batteries via Electrode and Interface Engineering

Anupriya K. Haridas, Chun Huang

Summary: This review discusses the polysulfide inhibition strategies employed in room-temperature sodium-sulfur batteries (RT-NaSBs) through electrode and interfacial engineering, including sulfur immobilization and polysulfide trapping. The benefits of engineering the highly reactive Na anode interface in improving the stability of RT-NaSBs are also elucidated. Lastly, the future perspectives on designing high-performance RT-NaSBs for practical applications are briefly outlined.

BATTERIES-BASEL (2023)

Article Chemistry, Physical

Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes

Sang Ho Lee, Yige Sun, Patrick S. Grant

Summary: This research developed an effective approach to enhance the charging rates of lithium ion batteries (LIBs) by strategically incorporating carbon nanotube (CNT) conductivity boosters into Li4Ti5O12 (LTO) electrodes. Multi-layer architectures comprising CNT-rich and CNT-free LTO electrode layers were manufactured using a layer-by-layer spray coating method to promote charge transfer kinetics of high mass loading electrodes. The best performing multi-layer was paired with a spray-coated LiFePO4 (LFP) positive electrode, resulting in attractive power performance that outperformed conventional LTO || LFP combinations.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Spray fabrication of additive-free electrodes for advanced Lithium-Ion storage technologies

Sang Ho Lee, Patrick S. Grant

Summary: Additive-free electrode architectures were fabricated using a layer-by-layer spray coating approach to enhance the capacity and reduce the cost of lithium-ion battery cells. By reducing the binder fraction and conductivity enhancers, all-additive-free full cell LIB configurations with high energy density and power performance were achieved.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2023)

Article Materials Science, Multidisciplinary

Revealing hot tear formation dynamics in Al-Cu alloys with X-ray radiography

Insung Han, Shikang Feng, Fabian Wilde, Patrick S. Grant, Enzo Liotti

Summary: Hot tears during alloy solidification can have catastrophic effects on cast tensile properties. While there are correlations between casting conditions and hot tear sensitivity, the influence of microstructure on tearing has not been fully understood. In this study, in situ X-ray radiography is used to quantify the formation and growth of hot tears in Al-5Cu and Al-5Cu-1Fe alloys, and an automated hot tear detection algorithm is developed to analyze the role of IMC particles in hot tear behavior.

ACTA MATERIALIA (2024)

Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)