4.5 Article

Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography

期刊

EUROPEAN JOURNAL OF RADIOLOGY
卷 84, 期 1, 页码 48-53

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.ejrad.2014.05.032

关键词

Breast neoplasm; Pathologic calcification; Malignant; Cone beam computed tomography

资金

  1. NIH [5 R33 CA09430, 1R44CA103236-04]
  2. NATIONAL CANCER INSTITUTE [R44CA103236, T32CA009430] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Objective: This pilot study was to evaluate cone beam breast computed tomography (CBBCT) with multiplanar and three dimensional (3D) visualization in differentiating breast masses in comparison with two-view mammograms. Methods: Sixty-five consecutive female patients (67 breasts) were scanned by CBBCT after conventional two-view mammography (Hologic, Motarget, compression factor 0.8). For CBBCT imaging, three hundred (1024 x 768 x 16b) two-dimensional (2D) projection images were acquired by rotating the x-ray tube and a flat panel detector (FPD) 360 degree around one breast. Three-dimensional CBBCT images were reconstructed from the 2D projections. Visage CS 3.0 and Amira 5.2.2 were used to visualize reconstructed CBBCT images. Results: Eighty-five breast masses in this study were evaluated and categorized under the breast imaging reporting and data system (BI-RADS) according to plain CBBCT images and two-view mammograms, respectively, prior to biopsy. BI-RADS category of each breast was compared with biopsy histopathology. The results showed that CBBCT with multiplanar and 3D visualization would be helpful to identify the margin and characteristics of breast masses. The category variance ratios for CBBCT under the BI-RADS were 23.5% for malignant tumors (MTs) and 27.3% for benign lesions in comparison with pathology, which were evidently closer to the histopathology results than those of two-view mammograms, p value <0.01. With the receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of CBBCT was 0.911, larger than that (AUC 0.827) of two-view mammograms, p value <0.01. Conclusion: CBBCT will be a distinctive noninvasive technology in differentiating and categorizing breast masses under BI-RADS. CBBCT may be considerably more effective to identify breast masses, especially some small, uncertain or multifocal masses than conventional two-view mammography. (C) 2014 Published by Elsevier Ireland Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据