4.6 Article

Direct conversion of syngas to DME: synthesis of new Cu-based hybrid catalysts using Fehling's solution, elimination of the calcination step

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 6, 页码 2649-2663

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta09038a

关键词

-

资金

  1. Petrotech Society of India
  2. Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]

向作者/读者索取更多资源

A facile new method for the synthesis of nanostructured Cu2O-ZnO and Cu2O-ZnO-MgO catalysts has been described. The catalysts were physically admixed with gamma-Al2O3 to form hybrid catalysts suitable for direct selective conversion of syngas to DME. The methanol synthesis component was synthesized from the corresponding nitrate precursors using Fehling's solution coupled with the glucose oxidation assisted precipitation method. This method resulted in the formation of the oxide form of the catalyst from the precursor phase and avoided ex situ calcination. In the present study, along with Cu2O, direct synthesis of divalent oxides (viz. ZnO and MgO) from their nitrate salts using Fehling's route has been demonstrated, which has resulted in highly structured Cu2O/ZnO/MgO catalysts. The resulting catalysts were characterized by XPS, XRD, BET-surface area, ammonia-TPD, H-2-TPR and SEM techniques. It was found that oxide phases were present in the catalyst. In addition, a different precursor phase with high purity and crystallinity along with high surface area, optimum acidity and lower reduction temperature was obtained through Fehling's method of catalyst synthesis. Catalytic activity for syngas conversion to DME was tested in the temperature range of 200-280 degrees C and the pressure range of 30-50 bar. The catalyst obtained through this method exhibited a syngas conversion of 50% and a DME selectivity of 80%. The catalyst is also found to be resistant towards coke formation as compared to the catalyst with a similar composition made through the conventional co-precipitation route.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据