4.5 Article

3D DEM Simulations of Drained Triaxial Compression of Sand Strengthened Using Microbially Induced Carbonate Precipitation

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)GM.1943-5622.0000848

关键词

Microbially induced carbonate precipitation (MICP); Soil improvement; Numerical simulations; Discrete-element method (DEM); Triaxial compression; Microscale

资金

  1. National Science Foundation (NSF) under the Engineering Research Centers (ERC) program [EEC-1449501]

向作者/读者索取更多资源

A discrete-element method (DEM)-based numerical model was developed to simulate the triaxial compression response of sand strengthened using microbially induced carbonate precipitation (MICP). A three-dimensional (3D) sphere packing algorithm that uses a particle-growth model was used to generate the initial assemblage of particles. A parameter identification approach was used to evaluate the five microscale parameters of the DEM model (two elastic and three rupture parameters) using experimental results from drained triaxial compression tests on sand. The interparticle friction angle was found to be the most influential of the five parameters with respect to modeling the constitutive response. A particle homogenization approach was used to model the particles when they are strengthened with low amounts of calcium carbonate (<1% by mass). The particle contacts are assigned a cohesive shear strength when higher amounts of calcium carbonate (1% by mass) are present to model the effect of cementation between sand grains. This DEM model was shown to be capable of adequately simulating the drained triaxial compressive response of MICP-strengthened sands. The increase in microstructural heterogeneity as the carbonate content is increased was visualized through normal contact force distributions. The model can be used to estimate the desired level of cementation for the design of MICP treatment strategies with minimal experimentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据