4.5 Article

Revisiting the Calibration Philosophy of Constitutive Models in Geomechanics

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)GM.1943-5622.0000895

关键词

Calibration of constitutive models; Inverse problem; Information-rich test

向作者/读者索取更多资源

Conventional laboratory tests in geomechanics are inherently designed to create a uniform stress-strain field whereby relative homogeneity in data prevails at the expense of information diversity. The one-element convenience using stress homogeneity lends itself well to constitutive model calibration. From a mathematical standpoint, this approach potentially promotes uncertainty and error propagation. More recently, there has been a growing effort to utilize all data of conventional tests, including the effect of end restraints, to improve model calibration. This conceptual study revisits the notion of constitutive model calibration holding the perspective of inverse problems. For calibration purposes, nonconventional loading and complex boundary conditions were deemed to create a rich (nonuniform) strain-stress field. In this study, flexure excitation was investigated as a plausible test configuration in experimental geomechanics. An attempt was made to gauge the merits of flexural loading of a cylindrical soil specimen in providing independent data (information-rich test). The proposed test configuration was experimentally conducted and numerically optimized for assessment of model calibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据