4.6 Article

Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models

期刊

FRONTIERS IN MICROBIOLOGY
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2017.02585

关键词

antibacterials; P. aeruginosa; ESKAPE pathogens; anti-persister therapies; antibiotic resistance

资金

  1. Agency for Innovation through Science and Technology (IWT)
  2. KU Leuven Excellence Center [PF/2010/07]
  3. KU Leuven Research Council [PF/10/010]
  4. Belgian Science Policy Office (BELSPO) [IAP P7/28]
  5. Fund for Scientific Research, Flanders (FWO) [G047112N, G0B2515N, G055517N]

向作者/读者索取更多资源

We recently described the novel anti-persister compound 1-[(2,4dichlorophenethyl) amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据