4.6 Article

Use of Batch Mixing To Investigate the Continuous Solvent-Free Mechanical Synthesis of OLED Materials by Twin-Screw Extrusion (TSE)

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 6, 期 1, 页码 193-201

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b02202

关键词

Mechanochemistry; Scale up; Rheogram; Particle size; Rotor speed; Fill volume

资金

  1. EPSRC [EP/L019655/1]
  2. Engineering and Physical Sciences Research Council [EP/L019655/1] Funding Source: researchfish
  3. EPSRC [EP/L019655/1] Funding Source: UKRI

向作者/读者索取更多资源

Mechanochemical synthesis has the potential to change the way in which chemistry is conducted, particularly with regard to removing or dramatically reducing the need for solvents. Recently, it has been demonstrated that mechanochemistry can be carried out continuously and on large scale through the use of twin-screw extrusion (TSE). TSE has successfully been applied to the synthesis of cocrystals, metal organic frameworks (MOFs), deep eutectic solvents (DESs), metal complexes, and organic condensation reactions. However, while TSE provides a route for mechanochemical synthesis to be developed into a continuous, high-volume manufacturing process, little is currently understood about how to best optimize the various process parameters involved. Herein, we investigate the use of a batch mixer that has been previously used in polymer processing, to optimize mechanochemical reactions performed by extrusion. In particular, reactions between 8-hydroxyquinoline (Hq) and metal acetate salts of zinc or aluminum to give quinolinate complexes Zng(2)center dot AcOH and Alg(3)center dot AcOH, which are of interest for organic light-emitting diode (OLED) applications, have been investigated. The manner in which the progress of the reaction correlates with the machine torque, temperature, and specific mechanical energy (SME) imparted by the batch mixer has been elucidated. Significantly, this knowledge enabled optimization of the mechanochemical reactions by TSE through the key parameters of screw speed, feed rate, temperature, and particle size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据