4.7 Article

Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements

期刊

REMOTE SENSING
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/rs9070698

关键词

vegetation greenness; wind farm; NDVI; EVI

资金

  1. National Science Foundation (NSF) [AGS-1247137]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [1247137] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study examines the possible impacts of real-world wind farms (WFs) on vegetation growth using two vegetation indices (VIs), the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), at a similar to 250 m resolution from the MODerate resolution Imaging Spectroradimeter (MODIS) for the period 2003-2014. We focus on two well-studied large WF regions, one in western Texas and the other in northern Illinois. These two regions differ distinctively in terms of land cover, topography, and background climate, allowing us to examine whether the WF impacts on vegetation, if any, vary due to the differences in atmospheric and boundary conditions. We use three methods (spatial coupling analysis, time series analysis, and seasonal cycle analysis) and consider two groups of pixels, wind farm pixels (WFPs) and non-wind-farm pixels (NWFPs), to quantify and attribute such impacts during the pre- and post-turbine periods. Our results indicate that the WFs have insignificant or no detectible impacts on local vegetation growth. At the pixel level, the VI changes demonstrate a random nature and have no spatial coupling with the WF layout. At the regional level, there is no systematic shift in vegetation greenness between the pre- and post-turbine periods. At interannual and seasonal time scales, there are no confident vegetation changes over WFPs relative to NWFPs. These results remain robust when the pre- and post-turbine periods and NWFPs are defined differently. Most importantly, the majority of the VI changes are within the MODIS data uncertainty, suggesting that the WF impacts on vegetation, if any, cannot be separated confidently from the data uncertainty and noise. Overall, there are some small decreases in vegetation greenness over WF regions, but no convincing observational evidence is found for the impacts of operating WFs on vegetation growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据