4.7 Article

Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds

期刊

POLYMERS
卷 9, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/polym9050175

关键词

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV); calcium silicate; composite scaffolds; bioactivity; mechanical properties; cytocompatibility

资金

  1. Natural Science Foundation of China [51575537, 81572577]
  2. Overseas, Hong Kong, and Macao Scholars Collaborated Researching Fund of National Natural Science Foundation of China [81428018]
  3. Hunan Provincial Natural Science Foundation of China [14JJ1006, 2016JJ1027]
  4. Project of Innovation-driven Plan of Central South University [2015CXS008, 2016CX023]
  5. Open-End Fund for the Valuable and Precision Instruments of Central South University
  6. State Key Laboratory of Solidification Processing at NWPU [SKLSP201605]
  7. State Key Laboratory for Powder Metallurgy
  8. Fundamental Research Funds for the Central Universities of Central South University

向作者/读者索取更多资源

The poor bioactivity and mechanical properties have restricted its biomedical application, although poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) had good biocompatibility and biodegradability. In this study, calcium silicate (CS) was incorporated into PHBV for improving its bioactivity and mechanical properties, and the porous PHBV/CS composite scaffolds were fabricated via selective laser sintering (SLS). Simulated body fluid (SBF) immersion tests indicated the composite scaffolds had good apatite-forming ability, which could be mainly attributed to the electrostatic attraction of negatively charged silanol groups derived from CS degradation to positively charged calcium ions in SBF. Moreover, the compressive properties of the composite scaffolds increased at first, and then decreased with increasing the CS content, which was ascribed to the fact that CS of a proper content could homogeneously disperse in PHBV matrix, while excessive CS would form continuous phase. The compressive strength and modulus of composite scaffolds with optimal CS content of 10 wt % were 3.55 MPa and 36.54 MPa, respectively, which were increased by 41.43% and 28.61%, respectively, as compared with PHBV scaffolds. Additionally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated MG63 cells had a higher proliferation rate on PHBV/CS composite scaffolds than that on PHBV. Alkaline phosphatase (ALP) staining assay demonstrated the incorporation of CS significantly promoted osteogenic differentiation of MG63 cells on the scaffolds. These results suggest that the PHBV/CS composite scaffolds have the potential in serving as a substitute in bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据