4.7 Article

Preparation of Microporous Polypropylene/Titanium Dioxide Composite Membranes with Enhanced Electrolyte Uptake Capability via Melt Extruding and Stretching

期刊

POLYMERS
卷 9, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/polym9030110

关键词

polypropylene; microporous membrane; titanium dioxide; lamellar orientation; stretching; electrolyte uptake

资金

  1. National Science Foundation of China [51673154]
  2. Chinese Scholarship Council (CSC)

向作者/读者索取更多资源

In this work, a blending strategy based on compounding the hydrophilic titanium dioxide (TiO2) particles with the host polypropylene (PP) pellets, followed by the common membrane manufacture process of melt extruding/annealing/stretching, was used to improve the polarity and thus electrolyte uptake capability of the PP-based microporous membranes. The influence of the TiO2 particles on the crystallinity and crystalline orientation of the PP matrix was studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and infrared dichroic methods. The results showed that the TiO2 incorporation has little influence on the oriented lamellar structure of the PP-based composite films. Investigations of the deformation behavior indicated that both the lamellar separation and interfacial debonding occurred when the PP/TiO2 composite films were subjected to uniaxial tensile stress. The scanning electron microscopy (SEM) observations verified that two forms of micropores were generated in the stretched PP/TiO2 composite membranes. Compared to the virgin PP membrane, the PP/TiO2 composite membranes especially at high TiO2 loadings showed significant improvements in terms of water vapor permeability, polarity, and electrolyte uptake capability. The electrolyte uptake of the PP/TiO2 composite membrane with 40 wt % TiO2 was 104%, which had almost doubled compared with that of the virgin PP membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据