4.7 Article

Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae

期刊

PLOS PATHOGENS
卷 13, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1006275

关键词

-

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB11040500]
  2. China Transgenic Research and Commercialization Key Special Project [2014ZX0800908B]

向作者/读者索取更多资源

Successful infection of the host requires secretion of effector proteins to evade or suppress plant immunity. Secretion of effectors in root-infecting fungal pathogens, however, remains unexplored. We previously reported that Verticillium dahliae, a root-infecting phytopathogenic fungus, develops a penetration peg from a hyphopodium to infect cotton roots. In this study, we report that a septin ring, requiring VdSep5, partitions the hyphopodium and the invasive hypha and form the specialized fungus-host interface. The mutant strain, Vd Delta noxb, in which NADPH oxidase B (VdNoxB) is deleted, impaired formation of the septin ring at the hyphal neck, indicating that NADPH oxidases regulate septin ring organization. Using GFP tagging and live cell imaging, we observed that several signal peptide containing secreted proteins showed ring signal accumulation/secretion at the penetration interface surrounding the hyphal neck. Targeted mutation for VdSep5 reduced the delivery rate of secretory proteins to the penetration interface. Blocking the secretory pathway by disrupting the vesicular trafficking factors, VdSec22 and VdSyn8, or the exocyst subunit, VdExo70, also arrested delivery of the secreted proteins inside the hyphopodium. Reduced virulence was observed when cotton roots were infected with Vd Delta sep5, Vd Delta sec22, Vd Delta syn8 and Vd Delta exo70 mutants compared to infection with the isogenic wild-type V592. Taken together, our data demonstrate that the hyphal neck is an important site for protein secretion during plant root infection, and that the multiple secretory routes are involved in the secretion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据