4.8 Article

A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence

期刊

CELL REPORTS
卷 21, 期 5, 页码 1253-1266

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2017.10.031

关键词

-

资金

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases [RO1AR060042]
  2. Carnegie Institution for Science

向作者/读者索取更多资源

Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs). SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据