4.7 Article

The homology gene BtDnmt1 is Essential for Temperature Tolerance in Invasive Bemisia tabaci Mediterranean Cryptic Species

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-017-03373-w

关键词

-

资金

  1. National Key Research and Development Program [2016YFC1200600]
  2. Ministry of Science and Technology, China
  3. National Natural Science Foundation of China [31672088]
  4. Special Fund for Scientific Research in Environmental Protection Public Interest [201409061]
  5. Common Wealth Special Fund for the Agricultural Industry [201303019]
  6. International Science & Technology Cooperation Program of China [2015DFG32300]

向作者/读者索取更多资源

The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading most parts of the world owing to its strong ecological adaptability, particularly its strong resistance to temperature stress. Epigenetic mechanisms play important roles in mediating ecological plasticity. In particular, DNA methylation has been the focus of attempts to understand the mechanism of phenotypic plasticity. The relationship between temperature and DNA methylation and how it affects the adaptability of invasive insects remain unknown. To investigate the temperature resistance role of DNA methyltransferase 1 (Dnmt1) in MED, we cloned and sequenced BtDnmt1 homology and identified its functions under various temperature conditions. The full-length cDNA of MED BtDnmt1 homology was 5,958 bp and has a 4,287 bp open reading frame that encodes a 1,428-amino-acid protein. BtDnmt1 mRNA expression levels were significantly down-regulated after feeding with dsRNA. Furthermore, after feeding with dsBtDnmt1, the MED adults exhibited significantly higher mortality under temperature stress conditions than the controls, suggesting that MED BtDnmt1 homology plays an essential role in the temperature tolerance capacity of MED. Our data improve our understanding of the temperature resistance and temperature adaptability mechanisms that have allowed the successful invasion and colonization of various environments by this alien species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据