4.7 Article

The synchronous improvement of strength and plasticity (SISP) in new Ni-Co based disc superalloys by controling stacking fault energy

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-07884-4

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51331007, 51671189, 11332010]

向作者/读者索取更多资源

It is a great challenge to improve the strength of disc superalloys without great loss of plasticity together since the microstructures benefiting the strength always do not avail the plasticity. Interestingly, this study shows that the trade-off relationship between strength and plasticity can be broken through decreasing stacking fault energy (SFE) in newly developed Ni-Co based disc superalloys. Axial tensile tests in the temperature range of 25 to 725 degrees C were carried out in these alloys with Co content ranging from 5% to 23% (wt.%). It is found that the ultimate tensile strength (UTS) and uniform elongation (UE) are improved synchronously when microtwinning is activated by decreasing the SFE at 650 and 725 degrees C. In contrast, only UTS is improved when stacking fault (SF) dominates the plastic deformation at 25 and 400 degrees C. These results may be helpful for designing advanced disc superalloys with relatively excellent strength and plasticity simultaneously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据