4.6 Article

Enhanced photoelectric performance of (2Al, S) co-doped rutile SnO2

期刊

RSC ADVANCES
卷 7, 期 68, 页码 42940-42945

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra07891a

关键词

-

资金

  1. National Natural Science Foundation of China [U1261103]
  2. Shenhua Group Corp. [U1261103]
  3. Natural Science Foundation of Shanxi Province of China [201601D011023]
  4. Graduate Science and Technology Innovation Fund Project of Shanxi [2017BY053]

向作者/读者索取更多资源

In this study, theoretical calculations and experiments have been carried out to investigate the photoelectric performance of (2Al, S) co-doped rutile SnO2. The electronic structures are studied by density functional theory (DFT). It is found that the metal Al can assist the bonding of the incorporated S with the neighboring O in SnO2, introducing new energy levels in the forbidden band of SnO2, which enhance the photoelectric performance. Meanwhile, the experiments are conducted to verify this. The (2Al, S) co-doped SnO2 with different doping ratios are prepared by a hydrothermal method. The samples are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that all the samples have rutile structure without any extra phase, and the dopant S2- ion was implanted into the crystalline lattice of (2Al, S) co-doped SnO2 and Al dopants replaced Sn atoms. The photoelectric performance tests show Al and S co-doping can improve the photoelectric performance, especially with a doping ratio of 5%, when the photocurrent reaches maximum of 3.0 mu A cm(-2) which is almost twice as much as pure SnO2, and the impedance is the smallest. The experiments results are consistent with our theoretical calculations. These findings are expected to be helpful for the design of highly active tin oxide-based photoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据