4.8 Article

Shape-Controlled CeO2 Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction

期刊

ACS CATALYSIS
卷 7, 期 10, 页码 6453-6463

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.7b01618

关键词

Deacon process; CeO2; shape controlled particles; structure sensitivity; stability; activity

资金

  1. National Key Research and Development Program of China [2016YFC0204300]
  2. National Natural Science Foundation of China [21577035]
  3. Commission of Science and Technology of Shanghai Municipality [13521103402, 15DZ1205305]
  4. 111 Project [B08021]
  5. LOEWE program STORE-E within the Center for Materials Research at JLU

向作者/读者索取更多资源

CeO2 is a promising catalyst for the HCl oxidation (Deacon process) in order to recover Cl-2. Employing shape-controlled CeO2 nanoparticles (cubes, octahedrons, rods) with facets of preferential orientations ((100), (111), (110)), we studied the activity and stability under two reaction conditions (harsh: Ar:HCl:O-2 = 6:2:2 and mild: Ar:HCl:O-2 = 7:1:2). It turns out that both activity and stability are structure-sensitive. In terms of space time yield (STY), the rods are the most active particles, followed by the cubes and finally the octahedrons. This very same trend is reconciled with the complete oxygen storage capacity (OSCc), indicating a correlation between the observed activity STY and the OSCc. The apparent activation energies are about 50 kJ/mol for cubes and rods, while the octahedrons reveal an apparent activation energy of 65 kJ/mol. The reaction order in O-2 is positive (0.260.32). Under mild reaction conditions, all three morphologies are stable, consistent with corresponding studies of CeO2 powders and CeO2 nanofibers. Under harsh reaction conditions, however, cubes and octahedrons are both instable, forming hydrated CeCl3, while rods are still stable. The present stability and activity experiments in the catalytic HCl oxidation reaction over shape-controlled CeO2 nanoparticles may serve as benchmarks for future ab initio studies of the catalyzed HCl oxidation reaction over well-defined CeO2 surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据