4.8 Article

Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-017-02287-5

关键词

-

资金

  1. National Research Fellow program [NRF-RF2010-02]
  2. NMRC CBRG [NMRC/CBRG/0091/2015]
  3. NMRC platform funding
  4. MOH Young Investigator Grant [IAFCAT2/004/2015]
  5. Duke-NUS Medical School [NUS/RECA(PILOT/2013/0006)]
  6. Grants-in-Aid for Scientific Research [17J02715] Funding Source: KAKEN

向作者/读者索取更多资源

Achieving robust cancer-specific lethality is the ultimate clinical goal. Here, we identify a compound with dual-inhibitory properties, named a131, that selectively kills cancer cells, while protecting normal cells. Through an unbiased CETSA screen, we identify the PIP4K lipid kinases as the target of a131. Ablation of the PIP4Ks generates a phenocopy of the pharmacological effects of PIP4K inhibition by a131. Notably, PIP4Ks inhibition by a131 causes reversible growth arrest in normal cells by transcriptionally upregulating PIK3IP1, a suppressor of the PI3K/Akt/mTOR pathway. Strikingly, Ras activation overrides a131-induced PIK3IP1 upregulation and activates the PI3K/Akt/mTOR pathway. Consequently, Ras-transformed cells override a131-induced growth arrest and enter mitosis where a131's ability to de-cluster supernumerary centrosomes in cancer cells eliminates Ras-activated cells through mitotic catastrophe. Our discovery of drugs with a dual-inhibitory mechanism provides a unique pharmacological strategy against cancer and evidence of cross-activation between the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways via a Ras. PIK3IP1. PI3K signaling network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据