4.5 Article

In Vitro Drug-Induced Liver Injury Prediction: Criteria Optimization of Efflux Transporter IC50 and Physicochemical Properties

期刊

TOXICOLOGICAL SCIENCES
卷 157, 期 2, 页码 487-499

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfx060

关键词

drug-induced liver injury (DILI); bile salt export pump (BSEP); efflux transport; multidrug resistance-associated protein (MRP); multidrug resistance protein 3 (MDR3); physicochemical properties

向作者/读者索取更多资源

Drug-induced liver injury (DILI) is a severe drug adverse response, which cannot always be reliably predicted in preclinical or clinical studies. Lack of observation of DILI during preclinical and clinical drug development has led to DILI being a leading cause of drug withdrawal from the market. As DILI is potentially fatal, pharmaceutical companies have been developing in vitro tools to screen for potential liver injury. Screens for physicochemical properties, mitochondrial function, and transport protein inhibition have all been employed to varying degrees of success. In vitro inhibition of the bile salt export pump (BSEP) has become a major risk factor for in vivo DILI predictions, yet discrepancies exist in which methods to use and the extent to which BSEP inhibition predicts clinical DILI. The presented work focuses on optimizing DILI predictions by comparing BSEP inhibition via the membrane vesicle assay and the hepatocyte-based BSEPcyte assay, as well as dual and triple liabilities. BSEP transport inhibition of taurcholic acids and glycocholic acids were similar for up to 29 drugs tested, in both the vesicle and hepatocyte-based assays. Positive and negative DILI predictions were optimized at a 50-mM cutoff value for 50 drugs using both NIH Livertox and PharmaPendium databases. Additionally, dual inhibition of BSEP and other efflux transporters (multidrug resistance-associated protein [MRP]2, MRP3, or MRP4) provided no observable predictive benefit compared with BSEP inhibition alone. Eighty-five percent of drugs with high molecular weight (>600 Da), high cLogP (>3), or a daily dose >100mg and BSEP inhibition were associated with DILI. Triple liability of BSEP inhibition, high molecular weight, and high cLogP attained a 100% positive prediction rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据