4.6 Article

Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function

期刊

THYROID
卷 27, 期 4, 页码 577-586

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/thy.2016.0392

关键词

myogenesis; thyroid hormone signaling; deiodinases; skeletal muscle function

资金

  1. NIDDK [R01 65055A]
  2. Brazilian National Research Council (CNPq) [202189/2011-2]
  3. American Thyroid Association (ATA) [M1301627]
  4. Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)

向作者/读者索取更多资源

Background: Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process. Methods: This was tested in mice with SKM disruption of Dio2 driven by two early developmental promoters: MYF5 and MYOD. Results: MYF5 myoblasts in culture differentiate normally into myotubes, despite loss of almost all D2 activity. Dio2 mRNA levels in developing SKM obtained from MYF5-D2KO embryos (E18.5) were about 54% of control littermates, but the expression of the T3-responsive genes Myh1 and 7 and Atp2a1 and 2 were not affected. In MYF5-D2KO and MYOD-D2KO neonatal hind-limb muscle, the expression of Myh1 and 7 and Atp2a2 remained unaffected, despite 60-70% loss in D2 activity and/or mRNA. Only in MYOD-D2KO neonatal muscle was there a 40% reduction in Atp2a1 mRNA. Postnatal growth of both mouse models and SKM function as assessed by exercise capacity and measurement of muscle strength were normal. Furthermore, an analysis of the adult soleus revealed no changes in the expression of T3-responsive genes, except for an about 18% increase in MYOD-D2KO SOL Myh7 mRNA. Conclusion: Two mouse models of early developmental disruption of Dio2 in myocyte precursor exhibit no significant SKM phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据