4.5 Article

Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites

期刊

ENZYME AND MICROBIAL TECHNOLOGY
卷 81, 期 -, 页码 80-87

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2015.08.003

关键词

Vitreoscilla hemoglobin; Glucanase; Coexpression; Natamycin; Antifungal activity; Chitinase

资金

  1. Science and Technology Plan Project of Beijing [D151100003915003]
  2. Beijing Natural Science Foundation [6152007]
  3. [2014000020060G180]

向作者/读者索取更多资源

Streptomyces lydicus A02 is a novel producer of commercially important polyene macrocyclic antibiotic natamycin and a potential biocontrol agent to several plant fungal diseases, including wilt caused by Fusarium oxysporum f. spp. To improve the natamycin production and the antifungal activity of S. lydicus A02, we coexpressed gene vgb encoding Vitreoscilla hemoglobin (VHb) and bgiC encoding Bacillus megaterium L103 glucanase, both under the control of the strong constitutive ermE* promoter, in S. lydicus A02. Our results showed that coexpressingVHb and glucanase improved cell growth, and the engineered strain produced 26.90% more biomass than the wild-type strain after 72 h fermentation in YSG medium. In addition, coexpressing genes encoding VHb. and glucanase led to increased natamycin production, higher endogenous chitinase activity and exogenous glucanase activity, as well as enhanced antifungal activity in the engineered S. lydicus AVG02 and AGV02, regardless of the position of the two genes on the plasmids. Compared with model strains, few reports have successfully coexpressed VHb and other foreign proteins in industrial strains. Our results illustrated an effective approach for improving antifungal activity in an industrial strain by the rational engineering of combined favorable factors. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据