4.7 Article

Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 106, 期 -, 页码 69-79

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2016.12.014

关键词

Bacteria; Chronosequence; Fungi; Nematode; Nitrogen; Mite; Phosphorus; Plant; Springtail; Succession; Diversity; Vegetation communities

资金

  1. New Zealand's Ministry for Business, Innovation and Employment's Science and Innovation Group

向作者/读者索取更多资源

Soil fertility and vegetation are major drivers of soil communities. Soil community responses to vegetation development and associated changes in soil fertility have been mostly reported for chronosequences that span time scales from decades to centuries. Here we evaluated soil communities for two contrasting chronosequences, the Franz Josef chronosequence in southern New Zealand caused by glacial retreat and spanning 120,000 years, and the Cooloola chronosequence in eastern Australia caused by aeolian movement of sand that spans 700,000 years. Both chronosequences feature later-phase retrogressive stages characterized by reduced nutrient availability and plant stature. We hypothesized that soil communities would mirror the patterns of vegetation across these long-term chronosequences with organism biomasses, abundances and diversity increasing throughout early stages of the succession and declining at retrogression stages. The hypothesis was not consistently supported. Bacterial and fungal biomass increased across the youngest chronosequence stages but remained unchanged across the later stages, while fungal-to-bacterial ratios increased throughout. Microbial biomass was related to soil nitrogen concentrations across both chronosequences. Invertebrate abundance and richness increased during the early stages of ecosystem development in both chronosequences, but different groups peaked at different stages at each chronosequence, and not all invertebrate groups declined during the retrogressive stages. Invertebrate groups had no consistent correlations with biotic or abiotic ecosystem properties across either chronosequence. Our study demorBtrates that soil organisms track changes in plant biomass and richness and soil fertility during the initial stages of both chronosequences, but with increasing age of the chronosequences, these relationships weaken and other factors drive the soil community. Possible explanations for the different patterns in soil communities at the two chronosequences include that they differ strongly in soil organic matter, nutrient concentrations and abundances of soil organisms (all of which are much higher at Franz Josef than Cooloola), overlaid with different macroclimate and geology, so that different factors are likely to restrict the presence of particular organisms across both chronosequences. As such, while soil fertility and vegetation are widely recognized as important drivers of the soil community, the manner in which these factors directly and indirectly shape the soil community can vary greatly across organism groups, among chronosequences, and over the time scales that ecosystems develop. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据