4.6 Article

Heterogeneity is key to hydrogel-based cartilage tissue regeneration

期刊

SOFT MATTER
卷 13, 期 28, 页码 4841-4855

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sm00423k

关键词

-

资金

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health [1R01AR065441]
  2. National Science Foundation under CAREER [1350090]
  3. National Institute of Health (NIH) Institutional Pharmaceutical Training
  4. Department of Education's GAANN
  5. Div Of Civil, Mechanical, & Manufact Inn
  6. Directorate For Engineering [1350090] Funding Source: National Science Foundation

向作者/读者索取更多资源

Degradable hydrogels have been developed to provide initial mechanical support to encapsulated cells while facilitating the growth of neo-tissues. When cells are encapsulated within degradable hydrogels, the process of neo-tissue growth is complicated by the coupled phenomena of transport of large extracellular matrix macromolecules and the rate of hydrogel degradation. If hydrogel degradation is too slow, neo-tissue growth is hindered, whereas if it is too fast, complete loss of mechanical integrity can occur. Therefore, there is a need for effective modelling techniques to predict hydrogel designs based on the growth parameters of the neo-tissue. In this article, hydrolytically degradable hydrogels are investigated due to their promise in tissue engineering. A key output of the model focuses on the ability of the construct to maintain overall structural integrity as the construct transitions from a pure hydrogel to engineered neo-tissue. We show that heterogeneity in cross-link density and cell distribution is the key to this successful transition and ultimately to achieve tissue growth. Specifically, we find that optimally large regions of weak cross-linking around cells in the hydrogel and well-connected and dense cell clusters create the optimum conditions needed for neo-tissue growth while maintaining structural integrity. Experimental observations using cartilage cells encapsulated in a hydrolytically degradable hydrogel are compared with model predictions to show the potential of the proposed model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据