4.6 Article

A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

期刊

SENSORS
卷 17, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/s17020292

关键词

multichannel calorimeter; enthalpy sensor array; adjustable microampere constant current loop; simultaneous assay; relative enzyme activity; catalase

资金

  1. Ministry of Science and Technology, Taiwan [NSC-96-2221-E-002-162, MOST 104-2313-B-002-027-, MOST 105-2221-E-002-132-MY3, MOST 105-2622-E-002-004-CC2, MOST 105-2627-M-002-013, MOST 105-3113-E-002-013]

向作者/读者索取更多资源

Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据