4.7 Article

Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 598, 期 -, 页码 289-296

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.04.079

关键词

Fine particulate matter; PM25; 1-Hydroxypyrene; N7-methylguanine (N7-MeG)

资金

  1. Environmental Protection Administration and National Science Council of Taiwan, ROC [NSC102-EPA-F-003-001]
  2. Ministry of Science and Technology [103-2314-B-016-007]

向作者/读者索取更多资源

An increased understanding is needed of the physiological effects and plausible biological mechanisms that link PM2.5 (particulate matter with an aerodynamic diameter below 2.5 mu m) exposure to mortality and morbidities such as atherosclerosis and respiratory disease. PM2.5 causes carcinogenic health effects. Biomonitoring in humans has suggested that 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxodG) and N7-methylguanine (N7MeG) are correlated with oxidative and methylated DNA damage. Thus, it is meaningful to explore the mechanisms of mutagenesis and carcinogenesis associated with oxidative and methylated DNA damage by simultaneously measuring these two markers. We recruited 72 participants from 2 areas (residential and commercial as well as residential and industrial) in the greater Taipei metropolitan area at baseline. Personal samplers were used to collect 24-hour PM2.5-integrated samples. All participants completed an interview, and blood and urine samples were collected the next morning. All collection procedures were repeated twice after a two month follow-up period. Urinary 8-oxodG and N7-MeG were assayed as biomarkers of oxidative and methylated DNA damage, respectively. Plasma superoxide dismutase (SOD) and glutathione peroxidase-1 (GPX-1) were measured as biomarkers of antioxidants. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). The mean PM2.5 level was 37.3 mu g/m(3) at baseline. PM2.5 concentrations were higher during winter than during spring and summer. After adjusting for confounds through a generalized estimating equation (GEE) analysis, N7-MeG was significantly increased by 8.1% (beta = 0.034, 95% Cls = 0.001-0.068) per 10 mu g/m(3) increment in PM2.5. 8-oxodG levels were positively correlated with N7-MeG according to both cross-sectional and longitudinal analyses, and 1-OHP was significantly associated with increasing 8-oxodG and N7-MeG concentrations. Exposure to PM2.5 increases methylated DNA damage. The mean level of urinary N7-MeG was 1000 -fold higher than that of 8-oxodG. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据