4.7 Article

The systematic characterization of nanoscale bamboo charcoal and its sorption on phenanthrene:A comparison with microscale

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 578, 期 -, 页码 399-407

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2016.10.196

关键词

Bamboo charcoal; Phenanthrene; Sorption; Nanoscale

资金

  1. National Natural Science Foundation of China [41130532]
  2. fundamental research funds for the central universities

向作者/读者索取更多资源

This study investigated the characteristics of nanoscale bamboo charcoal (NBC), and made a comparison with microscale bamboo charcoal (MBC) on how they impact on the sorption abilities of different soils. The two charcoals contained similar elemental contents (e.g., high C, low H and low N) and various functional groups on their surfaces (e.g., aromatic structure, carboxyl, and hydroxyl). However, NBC had a larger total pore volume than that of MBC and was more likely to generate multi-layer sorption of phenanthrene. Controlled by van der Waals forces and electrostatic forces, NBC formed meso-and macropores (intra-particle porosity) and a more intricate pore structure. The performance of NBC in aqueous and soil-water systems was conspicuous and impressing. In aqueous system, by virtue of its larger pore volume, surface area and nonprotonated aromatic carbon, the K-d (sorption coefficient) of NBC reached up to 1.24 x 10(6), almost 10 times higher than that of MBC In soil-water systems, although it could aggregate and react with compounds in soil, the performance of NBC was not weakened by the complicated soil properties, and was still more capable of phenanthrene sorption than MBC, even at an extremely low addition rate 0.2% in soils. Additionally, in comparison with some other common biochars, NBC still showed a promising capacity for phenanthrene,sorption in two systems. This finding increases our knowledge of NBC for the remediation of organic pollutants in soil and indicates that the addition rate of charcoals in soils could be reduced by lessening the particle size. Therefore, NBC provides a new possibility for soil pollutant remediation and deserves further research. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据