4.8 Article

In-Depth Understanding of the Morphology-Performance Relationship in Polymer Solar Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 25, 页码 14026-14034

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b03095

关键词

organic solar cells; thermal annealing; cooling rates; grazing incident wide-angle X-ray scattering; near-edge X-ray absorption fine structure spectroscopy

资金

  1. Australian Renewable Energy Agency (ARENA)
  2. Australian Research Council [FT100100275]
  3. Veski
  4. Australian Research Council [FT100100275] Funding Source: Australian Research Council

向作者/读者索取更多资源

It is well-established that thermal annealing optimizes the morphology and improves the efficiency of P3HT-based organic solar cells, but the effects of different cooling rates after annealing are not well understood. In this paper, we use a model system based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) to examine the relationship between morphology and device performance for annealing before (preannealing) and after (postannealing) the application of the electrode, with different cooling rates and in different device architectures. In the conventional structure, postannealing is confirmed to significantly enhance efficiency. The device prepared with a slow cooling rate (3.6%) shows a higher average power conversion efficiency than that prepared with a fast cooling rate (3.3%). The microstructural changes underlying this 10% increase in device performance and further effects of cooling rate, pre- and postannealing, and device architecture are comprehensively examined with a combination of synchrotron-based techniques, including grazing incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. The best device in the conventional architecture (postannealed with slow cooling rate) shows a more face-on orientation and narrower orientational distribution of P3HT crystallites. In addition, postannealing leads to PCBM diffusion toward the blend/top electrode interface. The enrichment of PCBM at the blend/top electrode interface plays a positive role in aiding electron collection at the electrode in the conventional structure, but it has a negative effect on the performance of the inverted structure, where hole collection at the top electrode instead is required. For this reason, in an inverted structure, preannealed films with slow cooling exhibit the best photovoltaic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据