4.7 Article

Angular dependence of aerosol information content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites

期刊

REMOTE SENSING OF ENVIRONMENT
卷 196, 期 -, 页码 163-177

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2017.05.007

关键词

CAPI; Aerosol; Information content; Retrieval error; DFS

资金

  1. Chinese Academy of Sciences [XDA04077300]
  2. National Natural Science Foundation of China [41375035]
  3. The University of Chinese Academy of Sciences (UCAS)
  4. Holland Computing Center and Office for Research and Economic Development in University of Nebraska-Lincoln

向作者/读者索取更多资源

Aerosols affect the radiative transfer in the absorption bands of carbon dioxide (CO2), thereby contributing to the uncertainties in the retrieval of CO2 from space. A Cloud and Aerosol Polarimetric Imager (CAPI) has been designed to fly on the Chinese Carbon Dioxide Observation Satellite (TanSat) and provide aerosol and cloud information to facilitate the measurements of CO2. This study aims to assess the information content about aerosol properties that can be obtained from CAPI's observations of radiance and polarization. We simulate synthetic CAPI observations using the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), from which the degree of freedom for signal (DFS) and a posteriori error for various aerosol parameters are calculated using optimal estimation theory. The simulation considers different combinations of fine and coarse aerosols and includes detailed treatment for both soil and vegetation surfaces. It is found that CAPI can provide 3 to 4.5 independent pieces of information about aerosol parameters, mainly related to aerosol total volume (or aerosol optical depth), fine mode fraction (fmf(nu)) of aerosol volume, and imaginary part of refractive index for coarse mode aerosols. At directions around back-scattering, aerosol information content is smaller due in part to the large directional surface reflectance. In addition, aerosol DFS also depends on fmf(nu), aerosol optical depth and solar zenith angle, and such dependence is analyzed for various viewing and azimuth angles. Due to weaker scattering of coarse aerosol, the information content of large particle is relatively less. Therefore, as fmf(nu) decreases, DFS remains large for fine aerosol and increases for coarse aerosol. With larger aerosol optical depth (AOD), more aerosol information content can be obtained, but when AOD increases to a threshold ranging from 0.5 to 1.2, aerosol DFS doesn't increase any more. At larger solar zenith angles (SZA), a longer light path affected by aerosol can slightly increase aerosol information content. Furthermore, the degree of linear polarization (DOLP) is shown to be more sensitive to aerosol properties than reflectance, hence improves CAPI's aerosol retrieval accuracy. The additional information content raised from DOLP measurements ranges from 1 to 1.8 in terms of DFS and reaches the largest in conditions of 0.2<0.4 at SZA<60 degrees. The larger AOD and fmf(nu), the more improvement for characterizing fine aerosol is obtained from polarization due to larger DOLP of fine aerosol scattering (or less for coarse aerosol). If AOD is known a priori (for example, from other A-Train satellites), total DFS for aerosol information content can be improved by 0.8 to 1.6 inmost cases, and could exceed 2.0 for conditions of small AOD (<0.2). However, the improvement has little dependence on AOD if AOD is larger than 0.2. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据