4.5 Article

Healing simulation for bond strength prediction of FDM

期刊

RAPID PROTOTYPING JOURNAL
卷 23, 期 3, 页码 551-561

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/RPJ-03-2016-0051

关键词

Simulation; Thermoplastic polymers; Bond strength; Fused deposition modeling; Thermal diffusion; Healing

向作者/读者索取更多资源

Purpose - The purpose of this paper is to present a diffusion-controlled healing model for predicting fused deposition modeling (FDM) bond strength between layers (z-axis strength). Design/methodology/approach - Diffusion across layers of an FDM part was predicted based on a one-dimensional transient heat analysis of the interlayer interface using a temperature-dependent diffusion model determined from rheological data. Integrating the diffusion coefficient across the temperature history with respect to time provided the total diffusion used to predict the bond strength, which was compared to the measured bond strength of hollow acrylonitrile butadiene styr (ABS) boxes printed at various processing conditions. Findings - The simulated bond strengths predicted the measured bond strengths with a coefficient of determination of 0.795. The total diffusion between FDM layers was shown to be a strong determinant of bond strength and can be similarly applied for other materials. Research limitations/implications - Results and analysis from this paper should be used to accurately model and predict bond strength. Such models are useful for FDM part design and process control. Originality/value - This paper is the first work that has predicted the amount of polymer diffusion that occurs across FDM layers during the printing process, using only rheological material properties and processing parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据