4.6 Article

Adaptation of anaerobic cultures of Escherichia coliK-12 in response to environmental trimethylamine-N-oxide

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 17, 期 7, 页码 2477-2491

出版社

WILEY
DOI: 10.1111/1462-2920.12726

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council UK through the SysMO initiative
  2. White Rose-BBSRC Mechanistic Biology Doctoral Training Partnership [BB/J014443/1]
  3. European Research Council [MLCS306999]
  4. Biotechnology and Biological Sciences Research Council [1655698] Funding Source: researchfish

向作者/读者索取更多资源

Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coliK-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E.coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据