4.3 Article

Linear stability analysis of finite length journal bearings in laminar and turbulent regimes

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1350650117691697

关键词

Finite length journal bearing; dynamic coefficients; stability; oil whirl; threshold speed of instability; Ng-Pan-Elrod and Constantinescu turbulent models

资金

  1. Qatar National Research Fund (QNRF)

向作者/读者索取更多资源

Dynamic coefficients of a finite length journal bearing are numerically calculated under laminar and turbulent regimes based on Ng-Pan-Elrod and Constantinescu models. Linear stability charts of a flexible rotor supported on laminar and turbulent journal bearings are found by calculating the threshold speed of instability associated to the start of instable oil whirl phenomenon. Local journal trajectories of the rotor-bearing system were found at different operating conditions solely based on the calculated dynamic coefficients in laminar and turbulent flow. Results show no difference between laminar and turbulent models at low loading while significant change of the size of the stable region was observed by increasing the Reynolds number in turbulent models. Stable margins based on the laminar flow at relatively low Sommerfeld numbers S0.05 were shown to fall inside the unstable region and hence rendering the laminar stability curves obsolete at high Reynolds numbers. Ng-Pan turbulent model was found to be generally more conservative and hence is recommended for rotor-bearing design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据