4.6 Article

Corticotropin-releasing factor receptor-1 modulates biomarkers of DNA oxidation in Alzheimer's disease mice

期刊

PLOS ONE
卷 12, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0181367

关键词

-

资金

  1. National Institute on Aging [AG051848, AG0051839, AG005131, AG018440, AG000216]
  2. National Institutes of Health [BX003040]

向作者/读者索取更多资源

Increased production of hydroxyl radical is the main source of oxidative damage in mammalian DNA that accumulates in Alzheimer's disease (AD). Reactive oxygen species (ROS) react with both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) to generate 8-hydroxy-2'-deoxyguanosine (8-OHdG), both of which can be measured in the urine. Knowledge of this pathway has positioned measurement of urine 8-OHdG as a reliable index of DNA oxidation and a potential biomarker target for tracking early cellular dysfunction in AD. Furthermore, epigenetic studies demonstrate decreased global DNA methylation levels (e.g. 5-methyl-2'-deoxycytidine, 5-mdC) in AD tissues. Moreover, stress hormones can activate neuronal oxidative stress which will stimulate the release of additional stress hormones and result in damages to hippocampal neurons in the AD brain. Our previous work suggests that treating AD transgenic mice the type-1 corticotropin-releasing factor receptor (CRFR1) antagonist, R121919, to reduce stress signaling, prevented onset of cognitive impairment, synaptic/dendritic loss and A beta plaque accumulation. Therefore, to investigate whether levels of DNA oxidation can be impacted by the same therapeutic approach, urine levels of hydrogen peroxide, 8-OHdG, 5-mdC and total antioxidant capacity (TAC) were analyzed using an AD Tg mouse model. We found that Tg animals had an 80% increase in hydrogen peroxide levels compared to wild type (Wt) counterparts, an effect that could be dramatically reversed by the chronic administration with R121919. A significant decrease of 8-OHdG levels was observed in Tg mice treated with CRFR1 antagonist. Collectively our data suggest that the beneficial effects of CRFR1 antagonism seen in Tg mice may be mechanistically linked to the modulation of oxidative stress pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据