4.7 Article

Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 119, 期 -, 页码 211-223

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2017.08.029

关键词

Piriformospora indica; Medicago truncatula; Defense-related; Salt-tolerance; Antioxidant enzyme

资金

  1. Tianjin Natural Science Foundation [13JCYBJC37600]
  2. Hebei Province Human Resources and Social Security Foundation [C201400308]

向作者/读者索取更多资源

Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na+ content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly. (C) 2017 Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据