4.5 Article

Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions

期刊

PLACENTA
卷 59, 期 -, 页码 74-86

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.placenta.2017.05.001

关键词

Placenta; Chorionic villous mesenchymal stromal cells; Endothelial cells; Proliferation; Migration; Monocyte adhesion; Oxidative stress

资金

  1. King Abdullah International Medical Research Centre [RC12/117]

向作者/读者索取更多资源

Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) produce a unique combination of molecules, which modulate important cellular functions of their target cells while concurrently suppressing their immune responses. These properties make MSCs advantageous candidates for cell-based therapy. Our first aim was to examine the effect of high levels of oxidative stress on pMSC functions. pMSCs were exposed to hydrogen peroxide (H2O2) and their ability to proliferate and adhere to an endothelial cell monolayer was determined. Oxidatively stressed pMSCs maintained their proliferation and adhesion potentials. The second aim was to measure the ability of pMSCs to prevent oxidative stress-related damage to endothelial cells. Endothelial cells were exposed to H2O2, then co-cultured with pMSCs, and the effect on endothelial cell adhesion, proliferation and migration was determined. pMSCs were able to reverse the damaging effects of oxidative stress on the proliferation and migration but not on the adhesion of endothelial cells. These data indicate that pMSCs are not only inherently resistant to oxidative stress, but also protect endothelial cell functions from oxidative stress-associated damage. Therefore, pMSCs could be used as a therapeutic tool in inflammatory diseases by reducing the effects of oxidative stress on endothelial cells. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据