4.5 Article

Blunted transcriptional response to skeletal muscle ischemia in rats with chronic kidney disease: potential role for impaired ischemia-induced angiogenesis

期刊

PHYSIOLOGICAL GENOMICS
卷 49, 期 4, 页码 230-237

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00124.2016

关键词

chronic kidney disease; angiogenesis; microarray; ischemia; skeletal muscle

资金

  1. Interdisciplinary Centre for Clinical Research (IZKF) at the University Hospital of the Friedrich-Alexander University of Erlangen-Nuremberg

向作者/读者索取更多资源

Chronic kidney disease (CKD) is associated with increased cardiovascular morbidity and mortality. Previous studies indicated an impairment of ischemia-induced angiogenesis in skeletal muscle of rats with CKD. We performed a systematic comparison of early gene expression in response to ischemia in rats with or without CKD to identify potential molecular mechanisms underlying impaired angiogenesis in CKD. CKD was induced in male rats by 5/6 nephrectomy (SNX); control rats were sham operated (sham). Eight weeks later, ischemia of the right limb was induced by ligation and resection of the femoral artery. Rats were killed 24 h after the onset of ischemia, and RNA was extracted from the musculus soleus of the ischemic and the nonischemic hindlimb. To identify differentially expressed transcripts, we analyzed RNA with Affymetrix GeneChip Rat Genome 230 2.0 Arrays. RT-PCR analysis of selected genes was performed to validate observed changes. Hindlimb ischemia upregulated 239 genes in CKD and 299 genes in control rats (66% overlap), whereas only a few genes were downregulated (14 in CKD and 34 in controls) compared with the nonischemic limb of the same animals. Comparison between the ischemic limbs of CKD and controls revealed downregulation of 65 genes in CKD; 37 of these genes were also among the ischemia-induced genes in controls. Analysis of functional groups (other than angiogenesis) pointed to genes involved in leukocyte recruitment and fatty acid metabolism. Transcript expression profiling points to a relatively small number of differentially expressed genes that may underlie the impaired postischemic angiogenesis in CKD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据