4.7 Article

From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows

期刊

PHYSICS OF FLUIDS
卷 29, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4990082

关键词

-

资金

  1. European Union's Seventh Framework Programme [339032]

向作者/读者索取更多资源

The relevance of two-dimensional three-component (2D3C) flows goes well beyond their occurrence in nature, and a deeper understanding of their dynamics might also be helpful in order to shed further light on the dynamics of pure two-dimensional (2D) or three-dimensional (3D) flows and vice versa. The purpose of the present paper is to make a step in this direction through a combination of numerical and analytical work. The analytical part is mainly concerned with the behavior of 2D3C flows in isolation and the connection between the geometry of the nonlinear interactions and the resulting energy transfer directions. Special emphasis is given to the role of helicity. We show that a generic 2D3C flow can be described by two stream functions corresponding to the two helical sectors of the velocity field. The projection onto one helical sector (homochiral flow) leads to a fully 3D constraint and to the inviscid conservation of the total (three-dimensional) enstrophy and hence to an inverse cascade of the kinetic energy of the third component also. The coupling between several 2D3C flows is studied through a set of suitably designed direct numerical simulations, where we also explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to stationary 3D out-of-equilibrium dynamics at the energy containing scales. The transition between 2D and 3D turbulence is then explored through adding a percentage of fully 3D Fourier modes in the volume. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据