4.7 Article

Approximate solving of nonlinear ordinary differential equations using least square weight function and metaheuristic algorithms

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2015.01.014

关键词

Metaheuristics; Weighted residual function; Approximate solution; Linear/nonlinear differential equation; Fourier series

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [NRF- 2013R1A2A1A01013886]

向作者/读者索取更多资源

Differential equations play a noticeable role in engineering, physics, economics, and other disciplines. In this paper, a general approach is suggested to solve a wide variety of linear and nonlinear ordinary differential equations (ODEs) that are independent of their forms, orders, and given conditions. With the aid of certain fundamental concepts of mathematics, Fourier series expansion and metaheuristic methods, ODEs can be represented as an optimization problem. The target is to minimize the weighted residual function (cost function) of the ODEs. To this end, two different approaches, unit weight function and least square weight function, are examined in order to determine the appropriate method. The boundary and initial values of ODEs are considered as constraints for the optimization model. Generational distance metric is used for evaluation and assessment of the approximate solutions versus the exact solutions. Six ODEs and four mechanical problems are approximately solved and compared with their exact solutions. The optimization task is carried out using different optimizers including the particle swarm optimization, the cuckoo search, and the water cycle algorithm. The optimization results obtained show that metaheuristic algorithms can be successfully applied for approximate solving of different types of ODEs. The suggested least square weight function is slightly superior over the unit weight function in terms of accuracy and statistical results for approximate solving of ODEs. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据