4.6 Article

On the dielectric decrement of electrolyte solutions: a dressed-ion theory analysis

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 3, 页码 1982-1987

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp07515k

关键词

-

向作者/读者索取更多资源

Based on the dressed-ion theory and a simple physical argument regarding the conductivity of the solution, we derive a relation between the ionic strength and dielectric constant of an electrolyte solution. At its simplest, this model gives the dielectric constant at low ionic strength l as epsilon(r)(l) = epsilon(r)(O)(1 + alpha l) (-1), where alpha (the excess polarization) is directly related to the dressed-ion charge. One contribution to the origin of the dielectric decrement is thus seen to stem from the electrostatic screening of the ions in solution, with no solvent contributions necessary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Efficient computation of the scattering intensity from systems of nonspherical particles

Rasmus A. X. Persson, Johan Bergenholtz

JOURNAL OF APPLIED CRYSTALLOGRAPHY (2016)

Article Chemistry, Physical

Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

Rasmus A. X. Persson, Viren Pattni, Anurag Singh, Stefan M. Kast, Matthias Heyden

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2017)

Article Computer Science, Interdisciplinary Applications

Bibliometric author evaluation through linear regression on the coauthor network

Rasmus A. X. Persson

JOURNAL OF INFORMETRICS (2017)

Letter Computer Science, Interdisciplinary Applications

Note on the theory of the w-index

Rasmus A. X. Persson

JOURNAL OF INFORMETRICS (2017)

Article Chemistry, Physical

Note: Modification of the Gay-Berne potential for improved accuracy and speed

Rasmus A. X. Persson

JOURNAL OF CHEMICAL PHYSICS (2012)

Article Chemistry, Physical

Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

Rasmus A. X. Persson, Nikolaos K. Voulgarakis, Jhih-Wei Chu

JOURNAL OF CHEMICAL PHYSICS (2014)

Article Physics, Fluids & Plasmas

Perturbation method to calculate the density of states

Rasmus A. X. Persson

PHYSICAL REVIEW E (2012)

Article Physics, Fluids & Plasmas

Sigma method for the microcanonical entropy or density of states

Rasmus A. X. Persson

PHYSICAL REVIEW E (2013)

Article Chemistry, Multidisciplinary

Stabilizing Colloidal Particles against Salting-out by Shortening Surface Grafts

G. Kristin Jonsson, Jeanette Ulama, Rasmus A. X. Persson, Malin Zackrisson Oskolkova, Michael Sztucki, Theyencheri Narayanan, Johan Bergenholtz

LANGMUIR (2019)

Article Education, Scientific Disciplines

Few-electron atoms with linear Bohr-Sommerfeld electron paths

Rasmus A. X. Persson

Summary: This article applies the old quantum theory to study many-electron atomic species, treating electrons as bouncing along straight lines on the nucleus. The Bohr-Sommerfeld meanfield calculations presented in the article generally give results accurate to within a few percent, with the main source of error traced to the neglect of the Pauli principle.

EUROPEAN JOURNAL OF PHYSICS (2021)

Article Chemistry, Physical

Note on the physical basis of spatially resolved thermodynamic functions

Rasmus A. X. Persson

Summary: The spatial resolution of extensive thermodynamic functions is discussed in this study. A physical definition of the spatial resolution based on a spatial analogy of partial molar quantities is proposed and shown to be consistent with the spatial resolution of hydration energies in molecular simulations. The study also compares different computational methods and finds that the entropy function calculated using first-order grid inhomogeneous solvation theory satisfies the proposed definition, while grid cell theory likely does not. The study concludes by deriving an approximate expression for the solvent contribution to the free energy of solvation in the limit of infinite dilution based on the spatial variation of density.

MOLECULAR SIMULATION (2022)

Article Education, Scientific Disciplines

Forces on hockey players and conservation laws: on the theoretical efficiency of different techniques

Rasmus A. X. Persson

Summary: The analysis on efficiency of different ice skating strides suggests that the 'angular momentum skating' technique is not superior to the traditional technique due to the opposing force component during the latter part of the stride.

EUROPEAN JOURNAL OF PHYSICS (2022)

Article Education, Scientific Disciplines

Free expansion of an ideal gas by kinetic gas theory

Rasmus A. X. Persson

Summary: This excerpt discusses the adiabatic free expansion of an ideal gas, exploring the energy difference between escaping and remaining gas and its relationship with classical thermodynamics.

EUROPEAN JOURNAL OF PHYSICS (2022)

Article Statistics & Probability

Theoretical evaluation of partial credit scoring of the multiple-choice test item

Rasmus A. X. Persson

Summary: In multiple-choice tests, guessing can introduce errors, but these errors can be minimized by penalizing wrong answers or rewarding partial knowledge. This study formulates optimal scoring functions to suppress guessing beyond test-taker's knowledge. It also explores the statistical properties of scores obtained through different marking schemes.

METRON-INTERNATIONAL JOURNAL OF STATISTICS (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)