4.6 Article

Vibrational Stark spectroscopy for assessing ligand-binding strengths in a protein

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 24, 页码 16131-16143

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp01892d

关键词

-

资金

  1. Swiss National Science Foundation [200021-117810]
  2. NCCR MUST
  3. University of Basel

向作者/读者索取更多资源

Nitrile groups are potentially useful spectroscopic probes in the infrared to characterize the binding and dynamics of ligands in proteins. This opens the possibility of locating and determining the binding mode of suitably labelled ligands in proteins based on optical spectroscopy, without the need for determining an X-ray structure. However, relating structure and spectroscopy requires means to accurately compute infrared spectra. This is investigated for benzonitrile (PhCN) in water, wild type (WT) and two lysozyme mutants in solution. The force field is validated by comparing with experimental data for benzonitrile in water which is the basis for computing the Stark shift and time scale for spectral diffusion of PhCN in WT and the L99A and L99G mutants of T4 lysozyme. The 1-d spectra for PhCN in WT and the two mutant proteins differ in their maximum absorption by up to 4 cm(-1), which reflects the modified electrostatic environments in the three proteins. It is also tested whether extending from 1-d to 2-d infrared spectroscopy provides further discrimination in the ligand-binding modes. First, for PhCN in solution the frequency fluctuation correlation function (FFCF) decays to zero at short times whereas in the protein a pronounced static inhomogeneous component is found. Secondly, the decay time of the FFCF for the mutant to which PhCN binds most strongly has the longest decay time. It is demonstrated explicitly that the ligand-binding free energy with respect to the three protein variants correlates with the Stark shift. This makes 1-d infrared spectroscopy together with computations a valuable tool for characterizing binding modes and potentially binding locations in proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据