4.6 Article

Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames

期刊

OPTICS EXPRESS
卷 25, 期 24, 页码 30214-30228

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.25.030214

关键词

-

类别

资金

  1. Energimyndigheten

向作者/读者索取更多资源

In order to obtain more detailed characteristics and information in highly turbulent flames, for a better understanding of the transient behavior of eddies in such flames, a measurement technique with sufficient temporal resolution is requested. However, the probing of species distributions relevant in combustion (e.g. OH, CH2O) with ultra-highspeed laser diagnostics still remains a challenge. Nd:YAG clusters commercially available can generate only 4-8 pulses, although with high laser energy. Systems based on a diode-pumped solid-state Nd:YAG laser combined with a dye laser produce only about 100 mu J pulse energy at ultra-high repetition rates (>= 50 kHz). Even more comprehensive information on the flame structure can be gained if simultaneous recording of multi-species is performed. In the present work, the development of the first ultra-high-speed diagnostic technique capable of simultaneous probing of hydroxyl radicals and formaldehyde distributions at a repetition rate of 50 kHz is outlined. This has been achieved by employing a burst laser pumped optical parametric oscillator system for the simultaneous detection of CH2O excited at 355 nm and OH-radicals excited at 283 nm, where the interference of scattering laser light can be avoided. The applicability of the proposed technique was demonstrated in a highly turbulent jet flame. Moreover, the presented improvement in terms of the number of consecutive images recorded with ultra-high-speed planar laser induced fluorescence imaging is significant. Due to the high temporal resolution, the movement of CH2O pocket enclosed by OH at the flame tip can be clearly captured. The transport velocity of the CH2O pocket was calculated and found to be in good agreement with previous LDV results. (C) 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据