4.6 Article

Nd3+ ions in nanomedicine: Perspectives and applications

期刊

OPTICAL MATERIALS
卷 63, 期 -, 页码 185-196

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2016.06.004

关键词

Neodymium ions; Fluorescent nanoparticles; Nanomedicine

资金

  1. Spanish Ministerio de Economia y Competitividad [MAT2013-47395-C4-1R]
  2. Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) [483238/2013-9)]
  3. CAPES (Coordenatoria de Aperfeicoamento de Pessoal de Ensino Superior) [A077/2013]
  4. CNPq
  5. Universidad Autonoma de Madrid [PVE A077/2013]
  6. Post Doctoral Fellowship grant PDE/CAPES at the Universidad Autonoma de Madrid, Spain [2108-14-3]
  7. Spanish Ministerio de Economia y Competitividad (MINECO)

向作者/读者索取更多资源

In this work we evaluate the impact that neodymium ions can have in modern nanomedicine when they are incorporated as optically active dopants in nanocrystals. In particular, we here discuss how the particular absorption and emission properties of this ion can be conveniently exploited for important biomedical applications, such as fluorescence imaging at both in vitro and in vivo level, non-contact nanothermometry and photothermal therapy. All these features can Confer neodymium-doped nano particles a multifunctional character and so Nd3+ is also envisaged as a paradigm ion for nanoparticle based theranostic applications. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Activity of Retinal Neurons Can Be Modulated by Tunable Near-Infrared Nanoparticle Sensors

James M. Begeng, Wei Tong, Blanca del Rosal, Michael Ibbotson, Tatiana Kameneva, Paul R. Stoddart

Summary: Patients with photoreceptor degeneration-caused blindness can partially regain vision through artificial stimulation of surviving retinal ganglion cells (RGCs). Nanoparticle-based optical sensors, specifically nanoparticle-enhanced infrared neural modulation (NINM), show potential in stimulating and inhibiting RGCs, which is important for modulating different types of RGCs. Gold nanorods with tunable absorption in the near-infrared range could be well-suited for retinal prosthesis applications but have not been demonstrated in RGCs before.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Activated Platelet-Targeted IR780 Immunoliposomes for Photothermal Thrombolysis

Ahmed Refaat, Blanca del Rosal, Viktoria Bongcaron, Aidan P. G. Walsh, Geoffrey Pietersz, Karlheinz Peter, Simon E. Moulton, Xiaowei Wang

Summary: Acute thrombosis is a significant cause of death and illness globally. Researchers have discovered that targeted photothermal therapy using liposomes can effectively dissolve blood clots without major side effects. Liposomes targeted to activated platelets can selectively accumulate in thrombi, leading to enhanced treatment efficacy.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Tuning Phonon Energies in Lanthanide-doped Potassium Lead Halide Nanocrystals for Enhanced Nonlinearity and Upconversion

Zhuolei Zhang, Artiom Skripka, Jakob C. Dahl, Chaochao Dun, Jeffrey J. Urban, Daniel Jaque, P. James Schuck, Bruce E. Cohen, Emory M. Chan

Summary: This article demonstrates the controllable synthesis of low-phonon-energy KPb2X5 (X=Cl, Br) nanoparticles and the ability to tune nanocrystal phonon energies as low as 128 cm(-1). KPb2Cl5 nanoparticles are moisture resistant and can be efficiently doped with lighter lanthanides. The low phonon energies of KPb2X5 nanoparticles promote upconversion luminescence from higher lanthanide excited states and enable highly nonlinear, avalanche-like emission from KPb2Cl5 : Nd3+ nanoparticles. The realization of nanoparticles with tunable, ultra-low phonon energies facilitates the discovery of nanomaterials with phonon-dependent properties, precisely engineered for applications in nanoscale imaging, sensing, luminescence thermometry and energy conversion.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Biochemical Research Methods

In vivo grading of lipids in fatty liver by near-infrared autofluorescence and reflectance

Jose Lifante, Maria de la Fuente-Fernandez, Marta Roman-Carmena, Nuria Fernandez, Daniel Jaque Garcia, Miriam Granado, Erving Ximendes

Summary: The prevalence of nonalcoholic fatty liver (NAFLD) is increasing worldwide, and accurate diagnosis is crucial to prevent complications. Ultrasonography may underestimate NAFLD prevalence, hence a need for a noninvasive method. In this study, an integrated approach using autofluorescence and reflectance signals accurately estimated triglyceride density in the livers of mice.

JOURNAL OF BIOPHOTONICS (2023)

Article Materials Science, Multidisciplinary

Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom

Wojciech M. Piotrowski, Riccardo Marin, Maja Szymczak, Emma Martin Rodriguez, Dirk H. Ortgies, Paloma Rodriguez-Sevilla, Miroslav D. Dramicanin, Daniel Jaque, Lukasz Marciniak

Summary: Lifetime-based luminescence thermometry enables accurate deep-tissue monitoring of temperature changes, but short lifetimes and poor brightness limit its performance. A solution to these limitations is the design and optimization of luminescent nanothermometers co-doped with transition metal and lanthanide ions, which exhibit strong near-infrared emission and long temperature-dependent photoluminescence lifetime. These nanothermometers, combined with a custom-made instrument, allow for obtaining 2D thermal maps for deep-tissue thermal mapping. This study provides foundations for the deployment of lifetime-based thermometry for accurate deep-tissue temperature monitoring.

ADVANCED OPTICAL MATERIALS (2023)

Article Oncology

Eosin Y-Functionalized Upconverting Nanoparticles: Nanophotosensitizers and Deep Tissue Bioimaging Agents for Simultaneous Therapeutic and Diagnostic Applications

Gabriel Lopez-Pena, Silvia Simon-Fuente, Dirk H. Ortgies, Maria Angeles Moline, Emma Martin Rodriguez, Francisco Sanz-Rodriguez, Maria Ribagorda

Summary: This work presents a nanoplatform for deep-tissue photodynamic therapy and imaging using upconverting nanoparticles functionalized with eosin Y (EY) as photosensitizers. The nanoparticles can be excited by 800 nm near infrared light, allowing better penetration and minimal thermal load. Additionally, the combination with UCNPs enables the transport of EY into the cell and the generation of reactive oxygen species (ROS) under 800 nm light. The functionalized UCNPs also exhibit deep tissue NIR-II fluorescence under 808 nm excitation, making them potential bioimaging agents.

CANCERS (2023)

Article Chemistry, Multidisciplinary

3D Optical Coherence Thermometry Using Polymeric Nanogels

Tamara Munoz-Ortiz, Idoia Alayeto, Jose Lifante, Dirk H. Ortgies, Riccardo Marin, Emma Martin Rodriguez, Maria del Carmen Iglesias de la Cruz, Gines Lifante-Pedrola, Jorge Rubio-Retama, Daniel Jaque

Summary: Nanothermometry utilizes nanoparticles as thermal probes, enabling remote and minimally invasive sensing. It has emerged as a powerful tool in biomedicine. However, the lack of 3D thermal imaging capability and readily available tools in clinic hinders its translation to the bedside.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Neural Networks Push the Limits of Luminescence Lifetime Nanosensing

Liyan Ming, Irene Zabala-Gutierrez, Paloma Rodriguez-Sevilla, Jorge Rubio Retama, Daniel Jaque, Riccardo Marin, Erving Ximendes

Summary: This article introduces a luminescence lifetime estimation method based on U-NET to improve the estimation accuracy under extremely low signal-to-noise ratio conditions. The effectiveness of U-NET is demonstrated in luminescence lifetime thermometry and its sensing performance improvement is verified through two experiments under extreme measurement conditions.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications

Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luis D. Carlos

Summary: Luminescence (nano)thermometry is a remote sensing technique that utilizes the temperature dependency of luminescence features to measure temperature. It has potential applications in various fields and requires the establishment of a theoretical background, standardized practices, and improved readouts through multiparametric analysis and artificial intelligence algorithms. Challenges in luminescence thermometry and the need for continuous innovation are also discussed.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Ag2S Biocompatible Ensembles as Dual OCT Contrast Agents and NIR Ocular Imaging Probes

Amalia Coro, Ada Herrero Ruiz, Mateo Pazo-Gonzalez, Alonso Sanchez-Cruz, Tobias Busch, Alejandro Hernandez Medel, Erving C. Ximendes, Dirk H. Ortgies, Rosalia Lopez-Mendez, Ana Espinosa, Dorleta Jimenez de Aberasturi, Daniel Jaque, Nuria Fernandez Monsalve, Enrique J. de la Rosa, Catalina Hernandez-Sanchez, Emma Martin Rodriguez, Beatriz H. Juarez

Summary: In this study, the application of Ag2S nanoparticles in ocular imaging was extended by preparing them with a biocompatible amphiphilic block copolymer. This method protects the photoluminescence properties of the nanoparticles and allows for the controlled preparation of submicrometric scattering centers, enhancing colloidal stability and biocompatibility. The resulting nanoparticles exhibit improved contrast for optical coherence tomography and near-infrared imaging.
Article Chemistry, Multidisciplinary

Lanthanide doped nanoparticles for reliable and precise luminescence nanothermometry in the third biological window

Ana C. C. Soares, Tasso O. Sales, Erving C. Ximendes, Daniel Jaque, Carlos Jacinto

Summary: In recent years, there has been significant interest in infrared emitting luminescent nanothermometers due to their potential for new diagnosis and therapy procedures. However, concerns have been raised regarding their reliability, as tissues can induce spectral distortions even in the commonly used second biological window. In this study, the effectiveness of shifting the operation range of these nanothermometers to the third biological window is demonstrated, showing minimal distortion by tissue and opening the path to reliable luminescence thermometry. Advanced analysis of emission spectra allows for sub-degree thermal uncertainties.

NANOSCALE ADVANCES (2023)

Article Materials Science, Multidisciplinary

Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging

W. M. Piotrowski, R. Marin, M. Szymczak, E. Martin Rodriguez, D. H. Ortgies, P. Rodriguez-Sevilla, P. Bolek, M. D. Dramicanin, D. Jaque, L. Marciniak

Summary: Near-infrared (NIR) luminescence thermometry is a reliable method for remote thermal sensing and imaging. Lanthanide (Ln(3+))-based nanophosphors are commonly used as NIR nanothermometers, but the combination of Ln(3+) with transition metal (TM) ions can enhance the sensitivity of the thermometric approach. However, there are few examples of luminescence nanothermometers combining both TM and Ln(3+), leaving room for further exploration of these systems.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Ion-induced bias in Ag2S luminescent nanothermometers

Marina Paris Ogayar, Diego Mendez-Gonzalez, Irene Zabala Gutierrez, Alvaro Artiga, Jorge Rubio-Retama, Oscar G. Calderon, Sonia Melle, Aida Serrano, Ana Espinosa, Daniel Jaque, Riccardo Marin

Summary: Luminescence nanothermometry is a technique that uses luminescence signals from nanosized materials to remotely and minimally invasively measure temperature. However, in a biomedical context, the reliability of temperature measurement is compromised by bias caused by environmental conditions. This study reveals an unexpected source of bias induced by metal ions, which enhances the emission of Ag2S nanothermometers. These findings highlight the need for caution when using luminescence nanothermometry in complex biological environments.

NANOSCALE (2023)

Article Materials Science, Multidisciplinary

Fabrication and luminescence properties of Al2O3-Ce:LuAG composite phosphor ceramics for solid-state laser lighting

Yanbin Wang, Xinyou Huang, Ziqiu Cheng, Penghui Chen, Yuyang Chen, Junhao Ye, Haohong Chen, Zhenzhen Zhou, Denis Yu Kosyanov, Jiang Li

Summary: Uniform Al2O3-Ce:LuAG composite phosphor ceramics (CPCs) with excellent luminescent properties and thermal stability have been successfully synthesized in this study, showing great potential for application in solid-state laser lighting.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of laser irradiance on opto-electrical properties of PVA embedded graphene copper ferrite nanocomposite strips

Syed Muhammad Ali Zaidi, Mazhar Ali Kalyar, Zulfiqar Ali Raza, Aayesha Shoukat, Rubaila Waseem, Muhammad Aslam

Summary: Polyvinyl alcohol (PVA) nanocomposite strips embedded with graphene nanosheets and copper-ferrite nanoparticles were synthesized using solution casting technique. Laser pulse irradiations were then applied to modify the structural, optical, and electrical properties of the strips, showing potential for optoelectronic devices.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Angular non-critical phase-matching second harmonic generation with the Ba3(ZnB5O10)PO4 crystal

Yunru Chen, Jialing Wu, Jiajia Wang, Shihui Ma, Hongwei Yu

Summary: This paper investigates the angular non-critical phase-matching second-harmonic-generation properties of Ba3(ZnB5O10)PO4 crystal and explores its potential applications in the output spectral regions.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Two noncentrosymmetric alkali metal phosphates MZnPO4 (M = Rb, Cs) with honeycomb-like structures

Qun Jing, Menglin Zhu, Lu Li, Xu Ji, Haiming Duan, Henglei Chen, Ming-Hsien Lee

Summary: The paper introduces two new nonlinear optical materials, MZnPO4 (M = Rb, Cs), synthesized by cation substitution. These materials exhibit a honeycomb-like structure and show mild SHG responses with short absorption edges. The thermal properties, IR spectra, and theoretical calculations of the materials are also discussed.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Evaluation of microscale crystallinity modification induced by laser writing on Mn3O4 thin films

Camila Ianhez-Pereira, Akhil Kuriakose, Ariano De Giovanni Rodrigues, Ana Luiza Costa Silva, Ottavia Jedrkiewicz, Monica Bollani, Marcio Peron Franco de Godoy

Summary: This study aims to evaluate the crystalline changes induced by ultrafast laser micromachining on manganese oxide thin films using micro-Raman spectroscopy. The results show that laser-writing is effective in locally modifying low-crystallinity films and increasing crystallite sizes, highlighting an interesting approach to evaluate laser-induced structural modifications on metal oxide thin films.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Studies of luminescence traits and Judd-Ofelt analysis of Sm3+ activated oxyfluoride glasses

Kamal Bansal, Neeraj Kumar Mishra, Ibrahim Abdullahi, Param Jeet Singh, Mohit Tyagi, Sukhpal Singh

Summary: A novel Sm3+ activated oxyfluoride glass was synthesized and its structure and properties were analyzed. The glass showed potential applications in lasers, optical temperature sensing, and high-energy scintillators.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Design and optimization of the performance of self-powered Sb2S3 photodetector by SCAPS-1D simulation and potential application in imaging

Xingjian Wang, Zhixu Wu, Jiawei Zhu, Yubin Kang, Mengqiang Cai, Yong Xia, Hui Deng

Summary: Antimony sulfide (Sb2S3) has been investigated as a promising material for visible light photodetectors due to its non-toxicity, stability, and high absorption coefficient. In this study, we systematically explored the impact of key parameters on the performance of Sb2S3 devices using simulation and successfully fabricated self-powered photodetectors with high responsivity and specific detectivity. Furthermore, we demonstrated the application of the Sb2S3 detector in a scanning imaging system, showcasing its potential for developing new types of visible light detectors and imaging systems.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Gamma-irradiated fluorophosphate glasses doped with various transition metals: A spectroscopic study

O. I. Sallam, R. M. Ahmed

Summary: The 20NaF-60P2O5-20Na2O fluorophosphate glass systems doped with 3 wt% of CoO and NiO were investigated for their optical parameters before and after gamma irradiation. The presence of defects within the glass network and the addition of transition metals were found to affect the properties of the composites. After irradiation, a red shift was observed in the dissipation factor spectrum. The energy lost at the surface of the composites was larger than the energy lost within the constituent materials. All investigated composites showed insulating behavior and exhibited increased nonlinear optical parameters after irradiation, with the CoO-doped composite showing the highest values.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Down-conversion emission of Er3+doped sulfophosphate glass: The role of TiO2 and Ag nanoparticles co-embedment

Fahimeh Ahmadi, Zeinab Ebrahimpour, Asghar Asgari, Bao Van

Summary: In this study, Er3+-doped sulfophosphate glasses containing titanium nanoparticles (TiO2 NPs) and different concentrations of silver nanoparticles (AgNPs) were synthesized. The impact of AgNPs on the physical and structural characteristics, optical absorption and emission features, and photocatalytic activity of the glasses were investigated. The results showed that the addition of AgNPs enhanced the emission intensity of the glasses, with the system containing 0.04 mol% of AgNPs exhibiting optimal performance. Furthermore, the presence of AgNPs and TiO2 NPs in the glass matrix positively affected the photocatalytic performance.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Blue LD-pumped continuous wave a-cut Pr3+:LiYF4 near-infrared laser at 868 nm

Zhuang Li, Rongfei Huang, Wei Yuan, Shaoqiang Zheng, Wenlu Liao, Huiying Xu, Zhiping Cai

Summary: This study reports the first realization of an 868 nm Pr:YLF laser pumped by an InGaN blue laser diode. The laser achieved a maximum power of 641 mW with stable output and good beam quality. The experimental results were in agreement with theoretical simulations.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

Direct detection of dopamine using zinc oxide nanowire-based surface plasmon resonance sensor

Bhishma Karki, Youssef Trabelsi, Amrindra Pal, Sofyan A. Taya, Ram Bharos Yadav

Summary: This study proposes an SF11 Prism- Ag- ZnO nanowires-CeO2-Sensing layer-based surface plasmon resonance sensor for measuring dopamine concentration in human blood. The sensor demonstrates high sensitivity and detection accuracy, and holds significant importance for early diagnosis of neurological diseases.

OPTICAL MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT theoretical and experimental investigations of the effect of Cu doping within SILAR deposited ZnS

M. Taoufiq, A. Soussi, A. Elfanaoui, A. Ait Hssi, S. Baoubih, A. Ihlal, K. Bouabid

Summary: In this study, the effect of copper doping within ZnS on glass substrates was investigated through experimental and theoretical approaches. Pure ZnS and Cu-doped ZnS films with varying copper concentrations were deposited on glass substrates using the SILAR technique. The structural, morphological, and optical properties of the films were characterized, and the theoretical FP-LAPW method based on density functional theory was employed to study the properties of copper-doped ZnS.

OPTICAL MATERIALS (2024)