4.7 Article

Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner

期刊

ENERGY
卷 91, 期 -, 页码 110-116

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2015.08.025

关键词

Heavy oil combustion; Swirl burner; Flue gas recirculation; NOx emissions

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LY15E060004]

向作者/读者索取更多资源

To reduce NOx emissions within industrial furnaces fuelled with heavy oil, a combustion configuration consisting of a low-NOx swirl burner, overfire air (OFA) and flue gas recirculation (FGR) was developed and then demonstrated in a pilot-scale furnace. In considering that FGR supply location always affects greatly combustion and NO, reduction performance, four combustion experiments with varying FGR were performed in turn: (i) under the circumstances without FGR and (ii) at three different FGR supply locations, i.e., FGR supplied through the burner periphery (BP-FGR), the main air pipe of the burner (MAP-FGR), and the duct between primary air and inner secondary air (DPS-FGR). Comparisons of gas temperatures and species concentrations downstream of the oil/air flame as well as NOx and CO emission levels were performed among the four settings to evaluate the effect of varying the FGR supply location. In comparison with the circumstances without FGR, supplying FGR in the furnace generally resulted in the change trends consisting of (i) decreasing the oxygen content and peak gas temperature in the primary combustion zone, (ii) prolonging the entire combustion process, and (iii) restraining the NOx generation while slightly increasing the CO emission. However, among the three settings with FGR, BPFGR exhibited the least contribution in the aforementioned change trends, whereas DPS-FGR attained the optimal FGR performance. Consequently, the swirl burner plus an OFA ratio of approximately 25% and a DPS-FGR pattern with a 10% FGR ratio achieved low NOx emissions of approximately 200 mg/m(3) at 3% O-2 and an acceptable CO emission of approximately 50 ppm within the furnace. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据