4.5 Article

Pyroelectric Harvesters for Generating Cyclic Energy

期刊

ENERGIES
卷 8, 期 5, 页码 3489-3502

出版社

MDPI AG
DOI: 10.3390/en8053489

关键词

pyroelectric harvester; cyclic heating; waste heat energy; PZT

资金

  1. National Science Council of Taiwan [MOST 103-2221-E-150-038]
  2. Common Laboratory for Micro and Nano Science and Technology at the National Formosa University

向作者/读者索取更多资源

Pyroelectric energy conversion is a novel energy process which directly transforms waste heat energy from cyclic heating into electricity via the pyroelectric effect. Application of a periodic temperature profile to pyroelectric cells is necessary to achieve temperature variation rates for generating an electrical output. The critical consideration in the periodic temperature profile is the frequency or work cycle which is related to the properties and dimensions of the air layer; radiation power and material properties, as well as the dimensions and structure of the pyroelectric cells. This article aims to optimize pyroelectric harvesters by matching all these requirements. The optimal induced charge per period increases about 157% and the efficient period band decreases about 77%, when the thickness of the PZT cell decreases from 200 m to 50 m, about a 75% reduction. Moreover, when using the thinner PZT cell for harvesting the pyroelectric energy it is not easy to focus on a narrow band with the efficient period. However, the optimal output voltage and stored energy per period decrease about 50% and 74%, respectively, because the electrical capacitance of the 50 m thick pyroelectric cell is about four times greater than that of the 200 m thick pyroelectric cell. In addition, an experiment is used to verify that the work cycle to be able to critically affect the efficiency of PZT pyroelectric harvesters. Periods in the range between 3.6 s and 12.2 s are useful for harvesting thermal cyclic energy by pyroelectricity. The optimal frequency or work cycle can be applied in the design of a rotating shutter in order to control the heated and unheated periods of the pyroelectric cells to further enhance the amount of stored energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据